Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2009 Marks available 3 Reference code 09N.2.sl.TZ0.10
Level SL only Paper 2 Time zone TZ0
Command term Write down Question number 10 Adapted from N/A

Question

Consider the points P(2, −1, 5) and Q(3, − 3, 8). Let L1 be the line through P and Q.

Show that PQ=(123) .

[1]
a.

The line L1 may be represented by {\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}   3 \\   { - 3} \\   8 \end{array}} \right) + s\left( {\begin{array}{*{20}{c}}   1 \\   { - 2} \\   3 \end{array}} \right) .

(i)     What information does the vector \left( {\begin{array}{*{20}{c}} 3\\ { - 3}\\ 8 \end{array}} \right) give about {L_1} ?

(ii)    Write down another vector representation for {L_1} using \left( {\begin{array}{*{20}{c}} 3\\ { - 3}\\ 8 \end{array}} \right) .

[3]
b.

The point {\text{T}}( - 1{\text{, }}5{\text{, }}p) lies on {L_1} .

Find the value of p .

[3]
c.

The point T also lies on {L_2} with equation \left( {\begin{array}{*{20}{c}} x\\ y\\ z \end{array}} \right) = \left( {\begin{array}{*{20}{c}} { - 3}\\ 9\\ 2 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 1\\ { - 2}\\ q \end{array}} \right) .

Show that q = - 3 .

[3]
d.

Let \theta be the obtuse angle between {L_1} and {L_2} . Calculate the size of \theta .

[7]
e.

Markscheme

evidence of correct approach     A1

e.g. \overrightarrow {{\rm{PQ}}}  = \overrightarrow {{\rm{OQ}}} - \overrightarrow {{\rm{OP}}}  , \left( {\begin{array}{*{20}{c}} 3\\ { - 3}\\ 8 \end{array}} \right) - \left( {\begin{array}{*{20}{c}} 2\\ { - 1}\\ 5 \end{array}} \right)

\overrightarrow {{\rm{PQ}}}  = \left( {\begin{array}{*{20}{c}} 1\\ { - 2}\\ 3 \end{array}} \right)     AG     N0

[1 mark]

a.

(i) correct description     R1     N1

e.g. reference to \left( {\begin{array}{*{20}{c}} 3\\ { - 3}\\ 8 \end{array}} \right) being the position vector of a point on the line, a vector to the line, a point on the line.

(ii) any correct expression in the form {\boldsymbol{r}} = {\boldsymbol{a}} + t{\boldsymbol{b}}    A2     N2

where {\boldsymbol{a}} is \left( {\begin{array}{*{20}{c}}   3 \\   { - 3} \\   8 \end{array}} \right) , and {\boldsymbol{b}} is a scalar multiple of \left( {\begin{array}{*{20}{c}}   1 \\   { - 2} \\   3 \end{array}} \right)

e.g. {\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}   3 \\   { - 3} \\   8 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}}   { - 1} \\   2 \\   { - 3} \end{array}} \right) , {\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}   {3 + 2s} \\   { - 3 - 4s} \\   {8 + 6s} \end{array}} \right)

[3 marks]

b.

one correct equation     (A1)

e.g. 3 + s = - 1 , - 3 - 2s = 5

s = - 4     A1

p = - 4     A1     N2

[3 marks]

c.

one correct equation     A1

e.g. - 3 + t = - 1 , 9 - 2t = 5

t = 2     A1

substituting t = 2

e.g. 2 + 2q = - 4 , 2q =  - 6     A1

q = - 3     AG     N0

[3 marks]

d.

choosing correct direction vectors \left( {\begin{array}{*{20}{c}} 1\\ { - 2}\\ 3 \end{array}} \right) and \left( {\begin{array}{*{20}{c}} 1\\ { - 2}\\ { - 3} \end{array}} \right)     (A1)(A1)

finding correct scalar product and magnitudes     (A1)(A1)(A1)

scalar product (1)(1) + ( - 2)( - 2) + ( - 3)(3)     ( = - 4)

magnitudes \sqrt {{1^2} + {{( - 2)}^2} + {3^2}} = \sqrt {14} , \sqrt {{1^2} + {{( - 2)}^2} + {{( - 3)}^2}} = \sqrt {14}

evidence of substituting into scalar product     M1

e.g. \cos \theta  = \frac{{ - 4}}{{3.741 \ldots  \times 3.741 \ldots }}

\theta  = 1.86 radians (or 107^\circ )    A1     N4

[7 marks]

e.

Examiners report

Most candidates answered part (a) easily.

a.

For part (b), a number of candidates stated that the vector was a "starting point," which misses the idea that it is a position vector to some point on the line.

b.

Parts (c) and (d) proved accessible to many.

c.

Parts (c) and (d) proved accessible to many.

d.

For part (e), a surprising number of candidates chose incorrect vectors. Few candidates seemed to have a good conceptual understanding of the vector equation of a line.

e.

Syllabus sections

Topic 4 - Vectors » 4.3 » Vector equation of a line in two and three dimensions: r = a + tb .
Show 66 related questions

View options