Date | November 2009 | Marks available | 3 | Reference code | 09N.2.sl.TZ0.10 |
Level | SL only | Paper | 2 | Time zone | TZ0 |
Command term | Write down | Question number | 10 | Adapted from | N/A |
Question
Consider the points P(2, −1, 5) and Q(3, − 3, 8). Let L1 be the line through P and Q.
Show that →PQ=(1−23) .
The line L1 may be represented by {\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}} 3 \\ { - 3} \\ 8 \end{array}} \right) + s\left( {\begin{array}{*{20}{c}} 1 \\ { - 2} \\ 3 \end{array}} \right) .
(i) What information does the vector \left( {\begin{array}{*{20}{c}} 3\\ { - 3}\\ 8 \end{array}} \right) give about {L_1} ?
(ii) Write down another vector representation for {L_1} using \left( {\begin{array}{*{20}{c}} 3\\ { - 3}\\ 8 \end{array}} \right) .
The point {\text{T}}( - 1{\text{, }}5{\text{, }}p) lies on {L_1} .
Find the value of p .
The point T also lies on {L_2} with equation \left( {\begin{array}{*{20}{c}} x\\ y\\ z \end{array}} \right) = \left( {\begin{array}{*{20}{c}} { - 3}\\ 9\\ 2 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 1\\ { - 2}\\ q \end{array}} \right) .
Show that q = - 3 .
Let \theta be the obtuse angle between {L_1} and {L_2} . Calculate the size of \theta .
Markscheme
evidence of correct approach A1
e.g. \overrightarrow {{\rm{PQ}}} = \overrightarrow {{\rm{OQ}}} - \overrightarrow {{\rm{OP}}} , \left( {\begin{array}{*{20}{c}} 3\\ { - 3}\\ 8 \end{array}} \right) - \left( {\begin{array}{*{20}{c}} 2\\ { - 1}\\ 5 \end{array}} \right)
\overrightarrow {{\rm{PQ}}} = \left( {\begin{array}{*{20}{c}} 1\\ { - 2}\\ 3 \end{array}} \right) AG N0
[1 mark]
(i) correct description R1 N1
e.g. reference to \left( {\begin{array}{*{20}{c}} 3\\ { - 3}\\ 8 \end{array}} \right) being the position vector of a point on the line, a vector to the line, a point on the line.
(ii) any correct expression in the form {\boldsymbol{r}} = {\boldsymbol{a}} + t{\boldsymbol{b}} A2 N2
where {\boldsymbol{a}} is \left( {\begin{array}{*{20}{c}} 3 \\ { - 3} \\ 8 \end{array}} \right) , and {\boldsymbol{b}} is a scalar multiple of \left( {\begin{array}{*{20}{c}} 1 \\ { - 2} \\ 3 \end{array}} \right)
e.g. {\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}} 3 \\ { - 3} \\ 8 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} { - 1} \\ 2 \\ { - 3} \end{array}} \right) , {\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}} {3 + 2s} \\ { - 3 - 4s} \\ {8 + 6s} \end{array}} \right)
[3 marks]
one correct equation (A1)
e.g. 3 + s = - 1 , - 3 - 2s = 5
s = - 4 A1
p = - 4 A1 N2
[3 marks]
one correct equation A1
e.g. - 3 + t = - 1 , 9 - 2t = 5
t = 2 A1
substituting t = 2
e.g. 2 + 2q = - 4 , 2q = - 6 A1
q = - 3 AG N0
[3 marks]
choosing correct direction vectors \left( {\begin{array}{*{20}{c}} 1\\ { - 2}\\ 3 \end{array}} \right) and \left( {\begin{array}{*{20}{c}} 1\\ { - 2}\\ { - 3} \end{array}} \right) (A1)(A1)
finding correct scalar product and magnitudes (A1)(A1)(A1)
scalar product (1)(1) + ( - 2)( - 2) + ( - 3)(3) ( = - 4)
magnitudes \sqrt {{1^2} + {{( - 2)}^2} + {3^2}} = \sqrt {14} , \sqrt {{1^2} + {{( - 2)}^2} + {{( - 3)}^2}} = \sqrt {14}
evidence of substituting into scalar product M1
e.g. \cos \theta = \frac{{ - 4}}{{3.741 \ldots \times 3.741 \ldots }}
\theta = 1.86 radians (or 107^\circ ) A1 N4
[7 marks]
Examiners report
Most candidates answered part (a) easily.
For part (b), a number of candidates stated that the vector was a "starting point," which misses the idea that it is a position vector to some point on the line.
Parts (c) and (d) proved accessible to many.
Parts (c) and (d) proved accessible to many.
For part (e), a surprising number of candidates chose incorrect vectors. Few candidates seemed to have a good conceptual understanding of the vector equation of a line.