Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2011 Marks available 4 Reference code 11M.1.sl.TZ1.2
Level SL only Paper 1 Time zone TZ1
Command term Find Question number 2 Adapted from N/A

Question

A line L passes through A(112) and is parallel to the line {\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}} { - 2}\\ 1\\ 5 \end{array}} \right) + s\left( {\begin{array}{*{20}{c}} 1\\ 3\\ { - 2} \end{array}} \right) .

The line L passes through point P when t = 2 .

Write down a vector equation for L in the form {\boldsymbol{r}} = {\boldsymbol{a}} + t{\boldsymbol{b}} .

[2]
a.

Find

(i)     \overrightarrow {{\rm{OP}}} ;

(ii)    |\overrightarrow {{\rm{OP}}} | .

[4]
b(i) and (ii).

Markscheme

correct equation in the form {\boldsymbol{r}} = {\boldsymbol{a}} + t{\boldsymbol{b}}     A2     N2

{\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}} 1\\ { - 1}\\ 2 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 1\\ 3\\ { - 2} \end{array}} \right)

[2 marks]

a.

(i) attempt to substitute t = 2 into the equation     (M1)

e.g. \left( {\begin{array}{*{20}{c}} 2\\ 6\\ { - 4} \end{array}} \right) , \left( {\begin{array}{*{20}{c}} 1\\ { - 1}\\ 2 \end{array}} \right) + 2\left( {\begin{array}{*{20}{c}} 1\\ 3\\ { - 2} \end{array}} \right)

\overrightarrow {{\rm{OP}}}  = \left( {\begin{array}{*{20}{c}} 3\\ 5\\ { - 2} \end{array}} \right)     A1     N2

(ii) correct substitution into formula for magnitude     A1

e.g. \sqrt {{3^2} + {5^2} + - {2^2}} , \sqrt {{3^2} + {5^2} + {2^2}}

|\overrightarrow {{\rm{OP}}}|  = \sqrt {38}      A1     N1

[4 marks]

b(i) and (ii).

Examiners report

Many candidates answered this question well. Some continue to write the vector equation in (a) using "L =", which does not earn full marks.

a.

Part (b) proved accessible for most, although small arithmetic errors were not uncommon. Some candidates substituted t = 2 into the original equation, and a few answered  \overrightarrow {{\rm{OP}}} = \left( {\begin{array}{*{20}{c}} 2\\ 6\\ { - 4} \end{array}} \right) . A small but surprising number of candidates left this question blank, suggesting the topic was not given adequate attention in course preparation. 

 

 

b(i) and (ii).

Syllabus sections

Topic 4 - Vectors » 4.3 » Vector equation of a line in two and three dimensions: r = a + tb .
Show 66 related questions

View options