Date | November 2017 | Marks available | 2 | Reference code | 17N.1.sl.TZ0.9 |
Level | SL only | Paper | 1 | Time zone | TZ0 |
Command term | Find | Question number | 9 | Adapted from | N/A |
Question
A line \(L\) passes through points \({\text{A}}( - 3,{\text{ }}4,{\text{ }}2)\) and \({\text{B}}( - 1,{\text{ }}3,{\text{ }}3)\).
The line \(L\) also passes through the point \({\text{C}}(3,{\text{ }}1,{\text{ }}p)\).
Show that \(\overrightarrow {{\text{AB}}} = \left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right)\).
Find a vector equation for \(L\).
Find the value of \(p\).
The point D has coordinates \(({q^2},{\text{ }}0,{\text{ }}q)\). Given that \(\overrightarrow {{\text{DC}}} \) is perpendicular to \(L\), find the possible values of \(q\).
Markscheme
correct approach A1
eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} { - 1} \\ 3 \\ 3 \end{array}} \right) - \left( {\begin{array}{*{20}{c}} { - 3} \\ 4 \\ 2 \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} 3 \\ { - 4} \\ { - 2} \end{array}} \right) + \left( {\begin{array}{*{20}{c}} { - 1} \\ 3 \\ 3 \end{array}} \right)\)
\(\overrightarrow {{\text{AB}}} = \left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right)\) AG N0
[1 mark]
any correct equation in the form \(r = a + tb\) (any parameter for \(t\))
where \(a\) is \(\left( {\begin{array}{*{20}{c}} { - 3} \\ 4 \\ 2 \end{array}} \right)\) or \(\left( {\begin{array}{*{20}{c}} { - 1} \\ 3 \\ 3 \end{array}} \right)\) and \(b\) is a scalar multiple of \(\left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right)\) A2 N2
eg\(\,\,\,\,\,\)\(r = \left( {\begin{array}{*{20}{c}} { - 3} \\ 4 \\ 2 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right),{\text{ }}(x,{\text{ }}y,{\text{ }}z) = ( - 1,{\text{ }}3,{\text{ }}3) + s( - 2,{\text{ }}1,{\text{ }} - 1),{\text{ }}r = \left( {\begin{array}{*{20}{c}} { - 3 + 2t} \\ {4 - t} \\ {2 + t} \end{array}} \right)\)
Note: Award A1 for the form \(a + tb\), A1 for the form \(L = a + tb\), A0 for the form \(r = b + ta\).
[2 marks]
METHOD 1 – finding value of parameter
valid approach (M1)
eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} { - 3} \\ 4 \\ 2 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ p \end{array}} \right),{\text{ }}( - 1,{\text{ }}3,{\text{ }}3) + s( - 2,{\text{ }}1,{\text{ }} - 1) = (3,{\text{ }}1,{\text{ }}p)\)
one correct equation (not involving \(p\)) (A1)
eg\(\,\,\,\,\,\)\( - 3 + 2t = 3,{\text{ }} - 1 - 2s = 3,{\text{ }}4 - t = 1,{\text{ }}3 + s = 1\)
correct parameter from their equation (may be seen in substitution) A1
eg\(\,\,\,\,\,\)\(t = 3,{\text{ }}s = - 2\)
correct substitution (A1)
eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} { - 3} \\ 4 \\ 2 \end{array}} \right) + 3\left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ p \end{array}} \right),{\text{ }}3 - ( - 2)\)
\(p = 5\,\,\,\,\,\left( {{\text{accept }}\left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ 5 \end{array}} \right)} \right)\) A1 N2
METHOD 2 – eliminating parameter
valid approach (M1)
eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} { - 3} \\ 4 \\ 2 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ p \end{array}} \right),{\text{ }}( - 1,{\text{ }}3,{\text{ }}3) + s( - 2,{\text{ }}1,{\text{ }} - 1) = (3,{\text{ }}1,{\text{ }}p)\)
one correct equation (not involving \(p\)) (A1)
eg\(\,\,\,\,\,\)\( - 3 + 2t = 3,{\text{ }} - 1 - 2s = 3,{\text{ }}4 - t = 1,{\text{ }}3 + s = 1\)
correct equation (with \(p\)) A1
eg\(\,\,\,\,\,\)\(2 + t = p,{\text{ }}3 - s = p\)
correct working to solve for \(p\) (A1)
eg\(\,\,\,\,\,\)\(7 = 2p - 3,{\text{ }}6 = 1 + p\)
\(p = 5\,\,\,\,\,\left( {{\text{accept }}\left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ 5 \end{array}} \right)} \right)\) A1 N2
[5 marks]
valid approach to find \(\overrightarrow {{\text{DC}}} \) or \(\overrightarrow {{\text{CD}}} \) (M1)
eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ 5 \end{array}} \right) - \left( {\begin{array}{*{20}{c}} {{q^2}} \\ 0 \\ q \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} {{q^2}} \\ 0 \\ q \end{array}} \right) - \left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ 5 \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} {{q^2}} \\ 0 \\ q \end{array}} \right) - \left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ p \end{array}} \right)\)
correct vector for \(\overrightarrow {{\text{DC}}} \) or \(\overrightarrow {{\text{CD}}} \) (may be seen in scalar product) A1
eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} {3 - {q^2}} \\ 1 \\ {5 - q} \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} {{q^2} - 3} \\ { - 1} \\ {q - 5} \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} {3 - {q^2}} \\ 1 \\ {p - q} \end{array}} \right)\)
recognizing scalar product of \(\overrightarrow {{\text{DC}}} \) or \(\overrightarrow {{\text{CD}}} \) with direction vector of \(L\) is zero (seen anywhere) (M1)
eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} {3 - {q^2}} \\ 1 \\ {p - q} \end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right) = 0,{\text{ }}\overrightarrow {{\text{DC}}} \bullet \overrightarrow {{\text{AC}}} = 0,{\text{ }}\left( {\begin{array}{*{20}{c}} {3 - {q^2}} \\ 1 \\ {5 - q} \end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right) = 0\)
correct scalar product in terms of only \(q\) A1
eg\(\,\,\,\,\,\)\(6 - 2{q^2} - 1 + 5 - q,{\text{ }}2{q^2} + q - 10 = 0,{\text{ }}2(3 - {q^2}) - 1 + 5 - q\)
correct working to solve quadratic (A1)
eg\(\,\,\,\,\,\)\((2q + 5)(q - 2),{\text{ }}\frac{{ - 1 \pm \sqrt {1 - 4(2)( - 10)} }}{{2(2)}}\)
\(q = - \frac{5}{2},{\text{ }}2\) A1A1 N3
[7 marks]