Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date None Specimen Marks available 1 Reference code SPNone.2.sl.TZ0.4
Level SL only Paper 2 Time zone TZ0
Command term Write down Question number 4 Adapted from N/A

Question

Consider the lines L1 , L2 , L2 , and L4 , with respective equations.

L1 : (xyz)=(123)+t(321)

L2  : (xyz)=(123)+p(321)

L3 : (xyz)=(010)+s(12a)

L4 : (xyz)=q(642)

 

Write down the line that is parallel to L4 .

[1]
a.

Write down the position vector of the point of intersection of L1 and L2 .

[1]
b.

Given that L1 is perpendicular to L3 , find the value of a .

[5]
c.

Markscheme

L1     A1     N1

[1 mark]

a.

(123)     A1     N1

[1 mark]

b.

choosing correct direction vectors     A1A1

e.g. (321) , (12a)

recognizing that {\boldsymbol{a}} \bullet {\boldsymbol{b}} = 0     M1

correct substitution     A1

e.g. - 3 - 4 - a = 0

a = - 7     A1     N3

[5 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 4 - Vectors » 4.3 » Vector equation of a line in two and three dimensions: r = a + tb .
Show 66 related questions

View options