Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2017 Marks available 5 Reference code 17M.1.sl.TZ1.8
Level SL only Paper 1 Time zone TZ1
Command term Find Question number 8 Adapted from N/A

Question

A line L1 passes through the points A(0, 1, 8) and B(3, 5, 2).

Given that L1 and L2 are perpendicular, show that p=2.

Find AB.

[2]
a.i.

Hence, write down a vector equation for L1.

[2]
a.ii.

A second line L2, has equation r = (11314)+s(p01).

Given that L1 and L2 are perpendicular, show that p=2.

[3]
b.

The lines L1 and L1 intersect at C(9, 13, z). Find z.

[5]
c.

Find a unit vector in the direction of L2.

[2]
d.i.

Hence or otherwise, find one point on L2 which is 5 units from C.

[3]
d.ii.

Markscheme

valid approach     (M1)

eg  AB,(018)+(352)

AB=(346)    A1     N2

[2 marks]

a.i.

any correct equation in the form r = a + tb (any parameter for t)     A2     N2

where a is (018) or (352), and is a scalar multiple of (346)

 

egr = (018)+t(346), r = (3+3t5+4t26t), r = j + 8k + t(3i + 4j – 6k)

 

Note:     Award A1 for the form a + tb, A1 for the form L = a + tb, A0 for the form r = b + ta.

 

[2 marks]

a.ii.

valid approach     (M1)

egab=0

choosing correct direction vectors (may be seen in scalar product)     A1

eg(346) and (p01), (346)(p01)=0

correct working/equation     A1

eg3p6=0

p=2     AG     N0

[3 marks]

b.

valid approach     (M1)

egL1=(913z), L1=L2

one correct equation (must be different parameters if both lines used)     (A1)

eg3t=9, 1+2s=9, 5+4t=13, 3t=1+2s

one correct value     A1

egt=3, s=4, t=2

valid approach to substitute their t or s value     (M1)

eg8+3(6), 14+4(1)

z=10     A1     N3

[5 marks]

c.

|d|=22+1(=5)    (A1)

15(201)(accept(250515))     A1     N2

[2 marks]

d.i.

METHOD 1 (using unit vector) 

valid approach     (M1)

eg(91310)±5ˆd

correct working     (A1)

eg(91310)+(201), (91310)(201)

one correct point     A1     N2

eg(11, 13, 9), (7, 13, 11)

METHOD 2 (distance between points) 

attempt to use distance between (1+2s, 13, 14+s) and (9, 13, 10)     (M1)

eg(2s8)2+02+(s4)2=5

solving 5s240s+75=0 leading to s=5 or s=3     (A1)

one correct point     A1     N2

eg(11, 13, 9), (7, 13, 11)

[3 marks]

d.ii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.
[N/A]
d.i.
[N/A]
d.ii.

Syllabus sections

Topic 4 - Vectors » 4.3 » Vector equation of a line in two and three dimensions: r=a+tb .
Show 66 related questions

View options