User interface language: English | Español

Date May 2018 Marks available 1 Reference code 18M.1.sl.TZ1.9
Level SL only Paper 1 Time zone TZ1
Command term Write down Question number 9 Adapted from N/A

Question

Point A has coordinates (−4, −12, 1) and point B has coordinates (2, −4, −4).

The line L passes through A and B.

Show that AB=(685)AB=685

[1]
a.

Find a vector equation for L.

[2]
b.i.

Point C (k , 12 , −k) is on L. Show that k = 14.

[4]
b.ii.

Find OBAB.

[2]
c.i.

Write down the value of angle OBA.

[1]
c.ii.

Point D is also on L and has coordinates (8, 4, −9).

Find the area of triangle OCD.

[6]
d.

Markscheme

correct approach       A1

eg   AO+OB,BA(244)(4121)

AB=(685)     AG  N0

[1 mark]

a.

any correct equation in the form r = a + tb (any parameter for t)      A2 N2

where a is (244) or (4121) and b is a scalar multiple of (685)

eg  r =(4121)+t(685),(x,y,z)=(2,4,4)+t(6,8,5), =(4+6t12+8t15t)

Note: Award A1 for the form a + tb, A1 for the form L = a + tb, A0 for the form rb + ta.

[2 marks]

b.i.

METHOD 1 (solving for t)

valid approach       (M1)

eg   (k12k)=(244)+t(685),(k12k)=(4121)+t(685)

one correct equation       A1

eg −4 + 8t = 12, −12 + 8t = 12

correct value for t       (A1)

eg   t = 2 or 3

correct substitution      A1

eg  2 + 6(2), −4 + 6(3), −[1 + 3(−5)]

k = 14      AG N0

 

METHOD 2 (solving simultaneously)

valid approach      (M1)

eg  (k12k)=(244)+t(685),(k12k)=(4121)+t(685)

two correct equations in        A1

eg   k = −4 + 6t, −k = 1 −5t

EITHER (eliminating k)

correct value for t       (A1)

eg    t = 2 or 3

correct substitution      A1

eg  2 + 6(2), −4 + 6(3)

OR (eliminating t)

correct equation(s)      (A1)

eg   5k + 20 = 30t and −6k − 6 = 30t, −k = 1 − 5(k+46)

correct working clearly leading to k = 14      A1

eg  k + 14 = 0, −6k = 6 −5k − 20, 5k = −20 + 6(1 + k)

THEN

k = 14       AG N0

[4 marks]

 

b.ii.

correct substitution into scalar product       A1

eg   (2)(6) − (4)(8) − (4)(−5), 12 − 32 + 20

OBAB = 0      A1 N0

[2 marks]

 

c.i.

OBA=π2,90(accept3π2,270)      A1 N1

[1 marks]

c.ii.

METHOD 1 (12 × height × CD)

recognizing that OB is altitude of triangle with base CD (seen anywhere)      M1

eg   12×|OB|×|CD|,OBCD, sketch showing right angle at B

CD=(685) or DC=(685)  (seen anywhere)       (A1)

correct magnitudes (seen anywhere)      (A1)(A1)

|OB|=(2)2+(4)2+(4)2=(36)

|CD|=(6)2+(8)2+(5)2=(125)

correct substitution into 12bh      A1

eg     12×6×125 

area =3125,155      A1 N3

 

METHOD 2 (subtracting triangles)

recognizing that OB is altitude of either ΔOBD or ΔOBC(seen anywhere)       M1

eg  12×|OB|×|BD|,OBBC, sketch of triangle showing right angle at B

one correct vector BD or DB or BC or CB (seen anywhere)       (A1)

eg   BD=(685)CB=(121610)

|OB|=(2)2+(4)2+(4)2=(36) (seen anywhere)       (A1)

one correct magnitude of a base (seen anywhere)        (A1)

|BD|=(6)2+(8)2+(5)2=(125),|BC|=144+256+100=(500)

correct working       A1

eg  12×6×50012×6×55,12×6×500×sin9012×6×55×sin90

area =3125,155      A1 N3

 

METHOD 3 (using 12ab sin C with ΔOCD)

two correct side lengths (seen anywhere)      (A1)(A1)

|OD|=(8)2+(4)2+(9)2=(161),|CD|=(6)2+(8)2+(5)2=(125), |OC|=(14)2+(12)2+(14)2=(536)

attempt to find cosine ratio (seen anywhere)       M1
eg  5362862161125,ODDC|OD||DC|

correct working for sine ratio       A1

eg   (125)2161×125+sin2D=1

correct substitution into 12absinC       A1

eg  0.5×161×125×6161

area =3125,155      A1 N3

[6 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
d.

Syllabus sections

Topic 4 - Vectors » 4.3 » Vector equation of a line in two and three dimensions: r=a+tb .
Show 74 related questions

View options