Date | November 2009 | Marks available | 3 | Reference code | 09N.2.sl.TZ0.10 |
Level | SL only | Paper | 2 | Time zone | TZ0 |
Command term | Show that | Question number | 10 | Adapted from | N/A |
Question
Consider the points P(2, −1, 5) and Q(3, − 3, 8). Let \({L_1}\) be the line through P and Q.
Show that \(\overrightarrow {{\rm{PQ}}} = \left( {\begin{array}{*{20}{c}}
1\\
{ - 2}\\
3
\end{array}} \right)\) .
The line \({L_1}\) may be represented by \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
3 \\
{ - 3} \\
8
\end{array}} \right) + s\left( {\begin{array}{*{20}{c}}
1 \\
{ - 2} \\
3
\end{array}} \right)\) .
(i) What information does the vector \(\left( {\begin{array}{*{20}{c}}
3\\
{ - 3}\\
8
\end{array}} \right)\) give about \({L_1}\) ?
(ii) Write down another vector representation for \({L_1}\) using \(\left( {\begin{array}{*{20}{c}}
3\\
{ - 3}\\
8
\end{array}} \right)\) .
The point \({\text{T}}( - 1{\text{, }}5{\text{, }}p)\) lies on \({L_1}\) .
Find the value of \(p\) .
The point T also lies on \({L_2}\) with equation \(\left( {\begin{array}{*{20}{c}}
x\\
y\\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 3}\\
9\\
2
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
1\\
{ - 2}\\
q
\end{array}} \right)\) .
Show that \(q = - 3\) .
Let \(\theta \) be the obtuse angle between \({L_1}\) and \({L_2}\) . Calculate the size of \(\theta \) .
Markscheme
evidence of correct approach A1
e.g. \(\overrightarrow {{\rm{PQ}}} = \overrightarrow {{\rm{OQ}}} - \overrightarrow {{\rm{OP}}} \) , \(\left( {\begin{array}{*{20}{c}}
3\\
{ - 3}\\
8
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
2\\
{ - 1}\\
5
\end{array}} \right)\)
\(\overrightarrow {{\rm{PQ}}} = \left( {\begin{array}{*{20}{c}}
1\\
{ - 2}\\
3
\end{array}} \right)\) AG N0
[1 mark]
(i) correct description R1 N1
e.g. reference to \(\left( {\begin{array}{*{20}{c}}
3\\
{ - 3}\\
8
\end{array}} \right)\) being the position vector of a point on the line, a vector to the line, a point on the line.
(ii) any correct expression in the form \({\boldsymbol{r}} = {\boldsymbol{a}} + t{\boldsymbol{b}}\) A2 N2
where \({\boldsymbol{a}}\) is \(\left( {\begin{array}{*{20}{c}}
3 \\
{ - 3} \\
8
\end{array}} \right)\) , and \({\boldsymbol{b}}\) is a scalar multiple of \(\left( {\begin{array}{*{20}{c}}
1 \\
{ - 2} \\
3
\end{array}} \right)\)
e.g. \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
3 \\
{ - 3} \\
8
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
{ - 1} \\
2 \\
{ - 3}
\end{array}} \right)\) , \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
{3 + 2s} \\
{ - 3 - 4s} \\
{8 + 6s}
\end{array}} \right)\)
[3 marks]
one correct equation (A1)
e.g. \(3 + s = - 1\) , \( - 3 - 2s = 5\)
\(s = - 4\) A1
\(p = - 4\) A1 N2
[3 marks]
one correct equation A1
e.g. \( - 3 + t = - 1\) , \(9 - 2t = 5\)
\(t = 2\) A1
substituting \(t = 2\)
e.g. \(2 + 2q = - 4\) , \(2q = - 6\) A1
\(q = - 3\) AG N0
[3 marks]
choosing correct direction vectors \(\left( {\begin{array}{*{20}{c}}
1\\
{ - 2}\\
3
\end{array}} \right)\) and \(\left( {\begin{array}{*{20}{c}}
1\\
{ - 2}\\
{ - 3}
\end{array}} \right)\) (A1)(A1)
finding correct scalar product and magnitudes (A1)(A1)(A1)
scalar product \((1)(1) + ( - 2)( - 2) + ( - 3)(3)\) \(( = - 4)\)
magnitudes \(\sqrt {{1^2} + {{( - 2)}^2} + {3^2}} \) \( = \sqrt {14} \) , \(\sqrt {{1^2} + {{( - 2)}^2} + {{( - 3)}^2}} \) \( = \sqrt {14} \)
evidence of substituting into scalar product M1
e.g. \(\cos \theta = \frac{{ - 4}}{{3.741 \ldots \times 3.741 \ldots }}\)
\(\theta = 1.86\) radians (or \(107^\circ \)) A1 N4
[7 marks]
Examiners report
Most candidates answered part (a) easily.
For part (b), a number of candidates stated that the vector was a "starting point," which misses the idea that it is a position vector to some point on the line.
Parts (c) and (d) proved accessible to many.
Parts (c) and (d) proved accessible to many.
For part (e), a surprising number of candidates chose incorrect vectors. Few candidates seemed to have a good conceptual understanding of the vector equation of a line.