User interface language: English | Español

Date May 2011 Marks available 6 Reference code 11M.2.sl.TZ2.8
Level SL only Paper 2 Time zone TZ2
Command term Find Question number 8 Adapted from N/A

Question

Line L1L1 passes through points A(114)A(114) and B(225)B(225) .

Line L2L2 has equation r=(247)+s(213) .

Find AB .

[2]
a.

Find an equation for L1 in the form r=a+tb .

[2]
b.

Find the angle between L1 and L2 .

[7]
c.

The lines L1 and L2 intersect at point C. Find the coordinates of C.

[6]
d.

Markscheme

appropriate approach     (M1)

e.g. AO+OB , BA

AB=(111)     A1     N2

[2 marks]

a.

any correct equation in the form r=a+tb     A2 N2

where b is a scalar multiple of (111)

e.g. r=(114)+t(111) , r=(2+t2t5+t) , r=2i2j+5k+t(ij+k)

 [2 marks]

b.

choosing correct direction vectors (213) , (111)     (A1)(A1)

finding scalar product and magnitudes     (A1)(A1)(A1)

scalar product =1×2+1×1+1×3 (=4)

magnitudes 12+(1)2+12 (=1.73) , 4+1+9 (=3.74)

substitution into uv|u||v| (accept θ=uv|u||v| , but not sinθ=uv|u||v| )     M1

e.g. cosθ=1×2+1×1+1×312+(1)2+1222+12+32 , cosθ=442

θ=0.906 (51.9)     A1      N5

[7 marks]

c.

METHOD 1 (from r=(114)+t(111) )

appropriate approach     (M1)

e.g. p=r , (114)+(111)t=(247)+(213)s

two correct equations    A1A1

e.g. 1+t=2+2s , 1t=4+s , 4+t=7+3s

attempt to solve     (M1)

one correct parameter     A1

e.g. t=3 , s=2

C is (221)     A1     N3

METHOD 2 (from r=(225)+t(111) )

appropriate approach     (M1)

e.g. p=r , (225)+t(111)=(247)+(213)s

two correct equations     A1A1

e.g. 2+t=2+2s , 2t=4+s , 5+t=7+3s

attempt to solve     (M1)

one correct parameter     A1

e.g. t=4 , s=2

C is (221)     A1     N3

[6 marks]

d.

Examiners report

Finding AB was generally well done, although some candidates reversed the subtraction.

a.

In part (b) not all the candidates recognized that AB was the direction vector of the line, as some used the position vector of point B as the direction vector.

b.

Many candidates successfully used scalar product and magnitudes in part (c), although a large number did choose vectors other than the direction vectors and many did not state clearly which vectors they were using.

c.

Candidates who were comfortable on the first three parts often had little difficulty with the final part. While the resulting systems were easily solved algebraically, a surprising number of candidates did not check their solutions either manually or with technology. An occasionally seen error in the final part was using a midpoint to find C. Some candidates found the point of intersection in part (c) rather than in part (d), indicating a familiarity with the type of question but a lack of understanding of the concepts involved.

d.

Syllabus sections

Topic 4 - Vectors » 4.3 » Vector equation of a line in two and three dimensions: r=a+tb .
Show 66 related questions

View options