User interface language: English | Español

Date November 2013 Marks available 2 Reference code 13N.1.sl.TZ0.10
Level SL only Paper 1 Time zone TZ0
Command term Show that Question number 10 Adapted from N/A

Question

Let \(f(x) = \frac{{{{(\ln x)}^2}}}{2}\), for \(x > 0\).

Let \(g(x) = \frac{1}{x}\). The following diagram shows parts of the graphs of \(f'\) and g.

The graph of \(f'\) has an x-intercept at \(x = p\).

Show that \(f'(x) = \frac{{\ln x}}{x}\).

[2]
a.

There is a minimum on the graph of \(f\). Find the \(x\)-coordinate of this minimum.

[3]
b.

Write down the value of \(p\).

[2]
c.

The graph of \(g\) intersects the graph of \(f'\) when \(x = q\).

Find the value of \(q\).

[3]
d.

The graph of \(g\) intersects the graph of \(f'\) when \(x = q\).

Let \(R\) be the region enclosed by the graph of \(f'\), the graph of \(g\) and the line \(x = p\).

Show that the area of \(R\) is \(\frac{1}{2}\).

[5]
e.

Markscheme

METHOD 1

correct use of chain rule     A1A1

eg     \(\frac{{2\ln x}}{2} \times \frac{1}{x},{\text{ }}\frac{{2\ln x}}{{2x}}\)

 

Note: Award A1 for \(\frac{{2\ln x}}{{2x}}\), A1 for \( \times \frac{1}{x}\).

 

\(f'(x) = \frac{{\ln x}}{x}\)     AG     N0

[2 marks]

METHOD 2

correct substitution into quotient rule, with derivatives seen     A1

eg     \(\frac{{2 \times 2\ln x \times \frac{1}{x} - 0 \times {{(\ln x)}^2}}}{4}\)

correct working     A1

eg     \(\frac{{4\ln x \times \frac{1}{x}}}{4}\)

\(f'(x) = \frac{{\ln x}}{x}\)     AG     N0

[2 marks]

a.

setting derivative \( = 0\)     (M1)

eg     \(f'(x) = 0,{\text{ }}\frac{{\ln x}}{x} = 0\)

correct working     (A1)

eg     \(\ln x = 0,{\text{ }}x = {{\text{e}}^0}\)

\(x = 1\)     A1     N2

[3 marks] 

b.

intercept when \(f'(x) = 0\)     (M1)

\(p = 1\)     A1     N2

[2 marks]

c.

equating functions     (M1)

eg     \(f' = g,{\text{ }}\frac{{\ln x}}{x} = \frac{1}{x}\)

correct working     (A1)

eg     \(\ln x = 1\)

\(q = {\text{e   (accept }}x = {\text{e)}}\)     A1     N2

[3 marks]

d.

evidence of integrating and subtracting functions (in any order, seen anywhere)     (M1)

eg     \(\int_q^e {\left( {\frac{1}{x} - \frac{{\ln x}}{x}} \right){\text{d}}x{\text{, }}\int {f' - g} } \)

correct integration \(\ln x - \frac{{{{(\ln x)}^2}}}{2}\)     A2

substituting limits into their integrated function and subtracting (in any order)     (M1)

eg     \((\ln {\text{e}} - \ln 1) - \left( {\frac{{{{(\ln {\text{e}})}^2}}}{2} - \frac{{{{(\ln 1)}^2}}}{2}} \right)\)

 

Note: Do not award M1 if the integrated function has only one term.

 

correct working     A1

eg     \((1 - 0) - \left( {\frac{1}{2} - 0} \right),{\text{ }}1 - \frac{1}{2}\)

\({\text{area}} = \frac{1}{2}\)     AG     N0

 

Notes: Candidates may work with two separate integrals, and only combine them at the end. Award marks in line with the markscheme.

 

[5 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.

Syllabus sections

Topic 6 - Calculus » 6.2 » Derivative of \({x^n}\left( {n \in \mathbb{Q}} \right)\) , \(\sin x\) , \(\cos x\) , \(\tan x\) , \({{\text{e}}^x}\) and \(\ln x\) .
Show 58 related questions

View options