Processing math: 100%

User interface language: English | Español

Date May 2014 Marks available 2 Reference code 14M.1.sl.TZ1.7
Level SL only Paper 1 Time zone TZ1
Command term Find Question number 7 Adapted from N/A

Question

Let f(x)=px3+px2+qx.

Find f(x).

[2]
a.

Given that f(x)0, show that p23pq.

[5]
b.

Markscheme

f(x)=3px2+2px+q     A2     N2

 

Note:     Award A1 if only 1 error.

 

[2 marks]

a.

evidence of discriminant (must be seen explicitly, not in quadratic formula)     (M1)

eg     b24ac

correct substitution into discriminant (may be seen in inequality)     A1

eg     (2p)24×3p×q, 4p212pq

f(x)0 then f has two equal roots or no roots     (R1)

recognizing discriminant less or equal than zero     R1

eg     Δ0, 4p212pq0

correct working that clearly leads to the required answer     A1

eg     p23pq0, 4p212pq

p23pq     AG     N0

[5 marks]

b.

Examiners report

[N/A]
a.

 

b.

Syllabus sections

Topic 6 - Calculus » 6.2 » Derivative of xn(nQ) , sinx , cosx , tanx , ex and lnx .
Show 58 related questions

View options