User interface language: English | Español

Date November 2016 Marks available 4 Reference code 16N.1.sl.TZ0.10
Level SL only Paper 1 Time zone TZ0
Command term Find Question number 10 Adapted from N/A

Question

Let f(x)=cosxf(x)=cosx.

Let g(x)=xkg(x)=xk, where kZ+.

Let k=21 and h(x)=(f(19)(x)×g(19)(x)).

(i)     Find the first four derivatives of f(x).

(ii)     Find f(19)(x).

[4]
a.

(i)     Find the first three derivatives of g(x).

(ii)     Given that g(19)(x)=k!(kp)!(xk19), find p.

[5]
b.

(i)     Find h(x).

(ii)     Hence, show that h(π)=21!2π2.

[7]
c.

Markscheme

(i)     f(x)=sinx, f(x)=cosx, f(3)(x)=sinx, f(4)(x)=cosx     A2     N2

(ii)     valid approach     (M1)

egrecognizing that 19 is one less than a multiple of 4f(19)(x)=f(3)(x)

f(19)(x)=sinx     A1     N2

[4 marks]

a.

(i)     g(x)=kxk1

g(x)=k(k1)xk2, g(3)(x)=k(k1)(k2)xk3     A1A1     N2

(ii)     METHOD 1

correct working that leads to the correct answer, involving the correct expression for the 19th derivative     A2

egk(k1)(k2)(k18)×(k19)!(k19)!, kP19

p=19 (accept k!(k19)!xk19)     A1     N1

METHOD 2

correct working involving recognizing patterns in coefficients of first three derivatives (may be seen in part (b)(i)) leading to a general rule for 19th coefficient     A2

egg=2!(k2), k(k1)(k2)=k!(k3)!, g(3)(x)=kP3(xk3)

g(19)(x)=19!(k19), 19!×k!(k19)!×19!, kP19

p=19 (accept k!(k19)!xk19)     A1     N1

[5 marks]

b.

(i)     valid approach using product rule     (M1)

eguv+vu, f(19)g(20)+f(20)g(19)

correct 20th derivatives (must be seen in product rule)     (A1)(A1)

egg(20)(x)=21!(2120)!x, f(20)(x)=cosx

h(x)=sinx(21!x)+cosx(21!2x2) (accept sinx(21!1!x)+cosx(21!2!x2))    A1     N3

(ii)     substituting x=π (seen anywhere)     (A1)

egf(19)(π)g(20)(π)+f(20)(π)g(19)(π), sinπ21!1!π+cosπ21!2!π2

evidence of one correct value for sinπ or cosπ (seen anywhere)     (A1)

egsinπ=0, cosπ=1

evidence of correct values substituted into h(π)     A1

eg21!(π)(0π2!), 21!(π)(π2), 0+(1)21!2π2

 

Note: If candidates write only the first line followed by the answer, award A1A0A0.

 

21!2π2     AG     N0

[7 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 6 - Calculus » 6.2 » Derivative of xn(nQ) , sinx , cosx , tanx , ex and lnx .
Show 58 related questions

View options