User interface language: English | Español

Date May Specimen paper Marks available 2 Reference code SPM.2.SL.TZ0.9
Level Standard Level Paper Paper 2 Time zone Time zone 0
Command term Hence and Find Question number 9 Adapted from N/A

Question

Consider a function f , such that f(x)=5.8sin(π6(x+1))+b, 0 ≤  x  ≤ 10,  b R .

The function  f  has a local maximum at the point (2, 21.8) , and a local minimum at (8, 10.2).

A second function g is given by  g ( x ) = p sin ( 2 π 9 ( x 3.75 ) ) + q ,  0 ≤  x  ≤ 10;  p q R .

The function g passes through the points (3, 2.5) and (6, 15.1).

Find the period of  f .

[2]
a.

Find the value of  b .

[2]
b.i.

Hence, find the value of f (6).

[2]
b.ii.

Find the value of p and the value of q .

[5]
c.

Find the value of x for which the functions have the greatest difference.

[2]
d.

Markscheme

correct approach      A1

eg    π 6 = 2 π p e r i o d   (or equivalent)

period = 12        A1

[2 marks]

 

a.

valid approach      (M1)

eg   max + min 2 b = max amplitude

21.8 + 10.2 2 , or equivalent

b = 16        A1

[2 marks]

 

b.i.

attempt to substitute into their function     (M1)

5.8 sin ( π 6 ( 6 + 1 ) ) + 16

f (6) = 13.1        A1

[2 marks]

 

b.ii.

valid attempt to set up a system of equations    (M1)

two correct equations        A1

p sin ( 2 π 9 ( 3 3.75 ) ) + q = 2.5 ,   p sin ( 2 π 9 ( 6 3.75 ) ) + q = 15.1

valid attempt to solve system   (M1)

p = 8.4;  q = 6.7        A1A1

[5 marks]

 

c.

attempt to use  | f ( x ) g ( x ) | to find maximum difference  (M1)

x = 1.64        A1

 

[2 marks]

 

d.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 3— Geometry and trigonometry » SL 3.7—Circular functions: graphs, composites, transformations
Show 89 related questions
Topic 2—Functions » SL 2.10—Solving equations graphically and analytically
Topic 2—Functions
Topic 3— Geometry and trigonometry

View options