Processing math: 100%

User interface language: English | Español

Date May Specimen paper Marks available 5 Reference code SPM.2.SL.TZ0.9
Level Standard Level Paper Paper 2 Time zone Time zone 0
Command term Find Question number 9 Adapted from N/A

Question

Consider a function f, such that f(x)=5.8sin(π6(x+1))+b, 0 ≤ x ≤ 10, bR.

The function f has a local maximum at the point (2, 21.8) , and a local minimum at (8, 10.2).

A second function g is given by g(x)=psin(2π9(x3.75))+q,  0 ≤ x ≤ 10;  pqR.

The function g passes through the points (3, 2.5) and (6, 15.1).

Find the period of f.

[2]
a.

Find the value of b.

[2]
b.i.

Hence, find the value of f(6).

[2]
b.ii.

Find the value of p and the value of q.

[5]
c.

Find the value of x for which the functions have the greatest difference.

[2]
d.

Markscheme

correct approach      A1

eg   π6=2πperiod  (or equivalent)

period = 12        A1

[2 marks]

 

a.

valid approach      (M1)

eg  max+min2b=maxamplitude

21.8+10.22, or equivalent

b = 16        A1

[2 marks]

 

b.i.

attempt to substitute into their function     (M1)

5.8sin(π6(6+1))+16

f(6) = 13.1        A1

[2 marks]

 

b.ii.

valid attempt to set up a system of equations    (M1)

two correct equations        A1

psin(2π9(33.75))+q=2.5,  psin(2π9(63.75))+q=15.1

valid attempt to solve system   (M1)

p = 8.4; q = 6.7        A1A1

[5 marks]

 

c.

attempt to use |f(x)g(x)| to find maximum difference  (M1)

x = 1.64        A1

 

[2 marks]

 

d.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 3— Geometry and trigonometry » SL 3.7—Circular functions: graphs, composites, transformations
Show 89 related questions
Topic 2—Functions » SL 2.10—Solving equations graphically and analytically
Topic 2—Functions
Topic 3— Geometry and trigonometry

View options