User interface language: English | Español

Date May 2022 Marks available 4 Reference code 22M.2.AHL.TZ1.6
Level Additional Higher Level Paper Paper 2 Time zone Time zone 1
Command term Solve Question number 6 Adapted from N/A

Question

Consider the function fx=2x-12x, x.

The function g is given by gx=x-1x2-2x-3, where x, x-1, x3.

Show that f is an odd function.

[2]
a.

Solve the inequality fxgx.

[4]
b.

Markscheme

attempt to replace x with -x           M1

f-x=2-x-12-x


EITHER

=12x-2x=-fx           A1


OR

=-2x-12x=-fx           A1


Note:
Award M1A0 for a graphical approach including evidence that either the graph is invariant after rotation by 180° about the origin or the graph is invariant after a reflection in the y-axis and then in the x-axis (or vice versa).

so f is an odd function           AG

 

[2 marks]

a.

attempt to find at least one intersection point            (M1)

x=-1.26686, x=0.177935, x=3.06167

x=-1.27, x=0.178, x=3.06

-1.27x-1,           A1

0.178x<3,           A1

x3.06           A1

 

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 2—Functions » SL 2.10—Solving equations graphically and analytically
Show 56 related questions
Topic 2—Functions » AHL 2.13—Rational functions
Topic 2—Functions » AHL 2.15—Solutions of inequalities
Topic 2—Functions

View options