User interface language: English | Español

Date November 2019 Marks available 4 Reference code 19N.2.SL.TZ0.S_10
Level Standard Level Paper Paper 2 Time zone Time zone 0
Command term Find Question number S_10 Adapted from N/A

Question

A rocket is travelling in a straight line, with an initial velocity of 140  m s−1. It accelerates to a new velocity of 500  m s−1 in two stages.

During the first stage its acceleration, a  m s−2, after t seconds is given by  a ( t ) = 240 sin ( 2 t ) , where  0 t k .

The first stage continues for k seconds until the velocity of the rocket reaches 375  m s−1.

Find an expression for the velocity, v  m s−1, of the rocket during the first stage.

[4]
a.

Find the distance that the rocket travels during the first stage.

[4]
b.

During the second stage, the rocket accelerates at a constant rate. The distance which the rocket travels during the second stage is the same as the distance it travels during the first stage.

Find the total time taken for the two stages.

[6]
c.

Markscheme

recognizing that  v = a         (M1)

correct integration         A1

eg       120 cos ( 2 t ) + c

attempt to find c using their v ( t )         (M1)

eg       120 cos ( 0 ) + c = 140

v ( t ) = 120 cos ( 2 t ) + 260          A1   N3

[4 marks]

a.

evidence of valid approach to find time taken in first stage           (M1)

eg      graph,   120 cos ( 2 t ) + 260 = 375

k = 1.42595          A1

attempt to substitute their  v and/or their limits into distance formula           (M1)

eg       0 1.42595 | v | ,    260 120 cos ( 2 t ) ,    0 k ( 260 120 cos ( 2 t ) ) d t

353.608

distance is 354 (m)         A1   N3

[4 marks]

b.

recognizing velocity of second stage is linear (seen anywhere)          R1

eg      graph,    s = 1 2 h ( a + b ) ,    v = m t + c

valid approach           (M1)

eg       v = 353.608

correct equation           (A1)

eg       1 2 h ( 375 + 500 ) = 353.608

time for stage two = 0.808248   ( 0.809142 from 3 sf)         A2

2.23420   ( 2.23914 from 3 sf)

2.23 seconds  ( 2.24 from 3 sf)         A1   N3

[6 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 3— Geometry and trigonometry » SL 3.8—Solving trig equations
Show 34 related questions
Topic 5 —Calculus » SL 5.9—Kinematics problems
Topic 5 —Calculus » SL 5.10—Indefinite integration, reverse chain, by substitution
Topic 2—Functions » SL 2.10—Solving equations graphically and analytically
Topic 5 —Calculus » SL 5.11—Definite integrals, areas under curve onto x-axis and areas between curves
Topic 2—Functions
Topic 3— Geometry and trigonometry
Topic 5 —Calculus

View options