User interface language: English | Español

Date May 2015 Marks available 4 Reference code 15M.1.hl.TZ2.10
Level HL only Paper 1 Time zone TZ2
Command term Indicate and Sketch Question number 10 Adapted from N/A

Question

The function \(f\) is defined by \(f(x) = \frac{{3x}}{{x - 2}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne 2\).

Sketch the graph of \(y = f(x)\), indicating clearly any asymptotes and points of intersection with the \(x\) and \(y\) axes.

[4]
a.

Find an expression for \({f^{ - 1}}(x)\).

[4]
b.

Find all values of \(x\) for which \(f(x) = {f^{ - 1}}(x)\).

[3]
c.

Solve the inequality \(\left| {f(x)} \right| < \frac{3}{2}\).

[4]
d.

Solve the inequality \(f\left( {\left| x \right|} \right) < \frac{3}{2}\).

[2]
e.

Markscheme

 

Note: In the diagram, points marked \(A\) and \(B\) refer to part (d) and do not need to be seen in part (a).

 

shape of curve     A1

 

Note:     This mark can only be awarded if there appear to be both horizontal and vertical asymptotes.

 

intersection at \((0,{\text{ }}0)\)     A1

horizontal asymptote at \(y = 3\)     A1

vertical asymptote at \(x = 2\)     A1

[4 marks]

a.

\(y = \frac{{3x}}{{x - 2}}\)

\(xy - 2y = 3x\)     M1A1

\(xy - 3x = 2y\)

\(x = \frac{{2y}}{{y - 3}}\)

\(\left( {{f^{ - 1}}(x)} \right) = \frac{{2x}}{{x - 3}}\)     M1A1

 

Note:     Final M1 is for interchanging of \(x\) and \(y\), which may be seen at any stage.

[4 marks]

b.

METHOD 1

attempt to solve \(\frac{{2x}}{{x - 3}} = \frac{{3x}}{{x - 2}}\)     (M1)

\(2x(x - 2) = 3x(x - 3)\)

\(x\left[ {2(x - 2) - 3(x - 3)} \right] = 0\)

\(x(5 - x) = 0\)

\(x = 0\;\;\;\)or\(\;\;\;x = 5\)     A1A1

METHOD 2

\(x = \frac{{3x}}{{x - 2}}\;\;\;\)or\(\;\;\;x = \frac{{2x}}{{x - 3}}\)     (M1)

\(x = 0\;\;\;\)or\(\;\;\;x = 5\)     A1A1

[3 marks]

c.

METHOD 1

at \({\text{A}}:\frac{{3x}}{{x - 2}} = \frac{3}{2}\) AND at \({\text{B}}:\frac{{3x}}{{x - 2}} =  - \frac{3}{2}\)     M1

\(6x = 3x - 6\)

\(x =  - 2\)     A1

\(6x = 6 - 3x\)

\(x = \frac{2}{3}\)     A1

solution is \( - 2 < x < \frac{2}{3}\)     A1

METHOD 2

\({\left( {\frac{{3x}}{{x - 2}}} \right)^2} < {\left( {\frac{3}{2}} \right)^2}\)     M1

\(9{x^2} < \frac{9}{4}{(x - 2)^2}\)

\(3{x^2} + 4x - 4 < 0\)

\((3x - 2)(x + 2) < 0\)

\(x =  - 2\)     (A1)

\(x = \frac{2}{3}\)     (A1)

solution is \( - 2 < x < \frac{2}{3}\)     A1

[4 marks]

d.

\( - 2 < x < 2\)     A1A1

 

Note:     A1 for correct end points, A1 for correct inequalities.

 

Note:     If working is shown, then A marks may only be awarded following correct working.

[2 marks]

Total [17 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.

Syllabus sections

Topic 2 - Core: Functions and equations » 2.2 » Investigation of key features of graphs, such as maximum and minimum values, intercepts, horizontal and vertical asymptotes and symmetry, and consideration of domain and range.
Show 31 related questions

View options