User interface language: English | Español

Date November 2017 Marks available 4 Reference code 17N.1.hl.TZ0.6
Level HL only Paper 1 Time zone TZ0
Command term Sketch Question number 6 Adapted from N/A

Question

Sketch the graph of \(y = \frac{{1 - 3x}}{{x - 2}}\), showing clearly any asymptotes and stating the coordinates of any points of intersection with the axes.

N17/5/MATHL/HP1/ENG/TZ0/06.a

[4]
a.

Hence or otherwise, solve the inequality \(\left| {\frac{{1 - 3x}}{{x - 2}}} \right| < 2\).

[5]
b.

Markscheme

N17/5/MATHL/HP1/ENG/TZ0/06.a/M

correct vertical asymptote     A1

shape including correct horizontal asymptote     A1

\(\left( {\frac{1}{3},{\text{ }}0} \right)\)     A1

\(\left( {0,{\text{ }} - \frac{1}{2}} \right)\)     A1

 

Note:     Accept \(x = \frac{1}{3}\) and \(y =  - \frac{1}{2}\) marked on the axes.

 

[4 marks]

a.

METHOD 1

N17/5/MATHL/HP1/ENG/TZ0/06.b/M

\(\frac{{1 - 3x}}{{x - 2}} = 2\)     (M1)

\( \Rightarrow x = 1\)    A1

\( - \left( {\frac{{1 - 3x}}{{x - 2}}} \right) = 2\)     (M1)

 

Note:     Award this M1 for the line above or a correct sketch identifying a second critical value.

 

\( \Rightarrow x =  - 3\)     A1

solution is \( - 3 < x < 1\)     A1

 

METHOD 2

\(\left| {1 - 3x} \right| < 2\left| {x - 2} \right|,{\text{ }}x \ne 2\)

\(1 - 6x + 9{x^2} < 4({x^2} - 4x + 4)\)     (M1)A1

\(1 - 6x + 9{x^2} < 4{x^2} - 16x + 16\)

\(5{x^2} + 10x - 15 < 0\)

\({x^2} + 2x - 3 < 0\)     A1

\((x + 3)(x - 1) < 0\)     (M1)

solution is \( - 3 < x < 1\)     A1

 

METHOD 3

\( - 2 < \frac{{1 - 3x}}{{x - 2}} < 2\)

consider \(\frac{{1 - 3x}}{{x - 2}} < 2\)     (M1)

 

Note:     Also allow consideration of “>” or “=” for the awarding of the M mark.

 

recognition of critical value at \(x = 1\)     A1

consider \( - 2 < \frac{{1 - 3x}}{{x - 2}}\)     (M1)

 

Note:     Also allow consideration of “>” or “=” for the awarding of the M mark.

 

recognition of critical value at \(x =  - 3\)     A1

solution is \( - 3 < x < 1\)     A1

[5 marks]

 

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 2 - Core: Functions and equations » 2.2 » Investigation of key features of graphs, such as maximum and minimum values, intercepts, horizontal and vertical asymptotes and symmetry, and consideration of domain and range.
Show 31 related questions

View options