User interface language: English | Español

Date May 2014 Marks available 4 Reference code 14M.2.hl.TZ1.10
Level HL only Paper 2 Time zone TZ1
Command term Find Question number 10 Adapted from N/A

Question

Let \(f(x) = \frac{{{{\text{e}}^{2x}} + 1}}{{{{\text{e}}^x} - 2}}\).

The line \({L_2}\) is parallel to \({L_1}\) and tangent to the curve \(y = f(x)\).

Find the equations of the horizontal and vertical asymptotes of the curve \(y = f(x)\).

[4]
a.

(i)     Find \(f'(x)\).

(ii)     Show that the curve has exactly one point where its tangent is horizontal.

(iii)     Find the coordinates of this point.

 

[8]
b.

Find the equation of \({L_1}\), the normal to the curve at the point where it crosses the y-axis.

[4]
c.

Find the equation of the line \({L_2}\).

[5]
d.

Markscheme

\(x \to  - \infty  \Rightarrow y \to  - \frac{1}{2}\) so \(y =  - \frac{1}{2}\) is an asymptote     (M1)A1

\({{\text{e}}^x} - 2 = 0 \Rightarrow x = \ln 2\) so \(x = \ln 2{\text{ }}( = 0.693)\) is an asymptote     (M1)A1

[4 marks]

a.

(i)     \(f'(x) = \frac{{2\left( {{{\text{e}}^x} - 2} \right){{\text{e}}^{2x}} - \left( {{{\text{e}}^{2x}} + 1} \right){{\text{e}}^x}}}{{{{\left( {{{\text{e}}^x} - 2} \right)}^2}}}\)     M1A1

          \( = \frac{{{{\text{e}}^{3x}} - 4{{\text{e}}^{2x}} - {{\text{e}}^x}}}{{{{\left( {{{\text{e}}^x} - 2} \right)}^2}}}\)

(ii)     \(f'(x) = 0\) when \({{\text{e}}^{3x}} - 4{{\text{e}}^{2x}} - {{\text{e}}^x} = 0\)     M1

          \({{\text{e}}^x}\left( {{{\text{e}}^{2x}} - 4{{\text{e}}^x} - 1} \right) = 0\)

          \({{\text{e}}^x} = 0,{\text{ }}{{\text{e}}^x} =  - 0.236,{\text{ }}{{\text{e}}^x} = 4.24{\text{ }}({\text{or }}{{\text{e}}^x} = 2 \pm \sqrt 5 )\)     A1A1

 

Note:     Award A1 for zero, A1 for other two solutions.

     Accept any answers which show a zero, a negative and a positive.

 

          as \({{\text{e}}^x} > 0\) exactly one solution     R1

 

Note:     Do not award marks for purely graphical solution.

 

(iii)     (1.44, 8.47)     A1A1

[8 marks]

b.

\(f'(0) =  - 4\)     (A1)

so gradient of normal is \(\frac{1}{4}\)     (M1)

\(f(0) =  - 2\)     (A1)

so equation of \({L_1}\) is \(y = \frac{1}{4}x - 2\)     A1

[4 marks]

c.

\(f'(x) = \frac{1}{4}\)     M1

so \(x = 1.46\)     (M1)A1

\(f(1.46) = 8.47\)     (A1)

equation of \({L_2}\) is \(y - 8.47 = \frac{1}{4}(x - 1.46)\)     A1

(or \(y = \frac{1}{4}x + 8.11\))

[5 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 2 - Core: Functions and equations » 2.2 » Investigation of key features of graphs, such as maximum and minimum values, intercepts, horizontal and vertical asymptotes and symmetry, and consideration of domain and range.
Show 31 related questions

View options