User interface language: English | Español

Date November 2015 Marks available 3 Reference code 15N.1.hl.TZ0.12
Level HL only Paper 1 Time zone TZ0
Command term Indicate and Sketch Question number 12 Adapted from N/A

Question

Consider the function defined by f(x)=x1x2f(x)=x1x2 on the domain 1x1.

Show that f is an odd function.

[2]
a.

Find f(x).

[3]
b.

Hence find the x-coordinates of any local maximum or minimum points.

[3]
c.

Find the range of f.

[3]
d.

Sketch the graph of y=f(x) indicating clearly the coordinates of the x-intercepts and any local maximum or minimum points.

[3]
e.

Find the area of the region enclosed by the graph of y=f(x) and the x-axis for x0.

[4]
f.

Show that 11|x1x2|dx>|11x1x2dx|.

[2]
g.

Markscheme

f(x)=(x)1(x)2     M1

=x1x2

=f(x)     R1

hence f is odd     AG

[2 marks]

a.

f(x)=x12(1x2)122x+(1x2)12     M1A1A1

[3 marks]

b.

f(x)=1x2x21x2(=12x21x2)     A1

 

Note:     This may be seen in part (b).

 

Note:     Do not allow FT from part (b).

 

f(x)=012x2=0     M1

x=±12     A1

[3 marks]

c.

y-coordinates of the Max Min Points are y=±12     M1A1

so range of f(x) is [12, 12]     A1

 

Note:     Allow FT from (c) if values of x, within the domain, are used.

[3 marks]

d.

Shape: The graph of an odd function, on the given domain, s-shaped,

where the max(min) is the right(left) of 0.5 (0.5)     A1

x-intercepts     A1

turning points     A1

[3 marks]

e.

area=10x1x2dx     (M1)

attempt at “backwards chain rule” or substitution     M1

=1210(2x)1x2dx

 

Note:     Condone absence of limits for first two marks.

 

=[23(1x2)3212]10     A1

=[13(1x2)32]10

=0(13)=13     A1

[4 marks]

f.

11|x1x2|dx>0     R1

|11x1x2dx|=0     R1

so 11|x1x2|dx>|11x1x2dx|     AG

[2 marks]

Total [20 marks]

g.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.
[N/A]
g.

Syllabus sections

Topic 2 - Core: Functions and equations » 2.2 » The graph of a function; its equation y=f(x) .
Show 43 related questions

View options