User interface language: English | Español

Date May 2017 Marks available 1 Reference code 17M.1.hl.TZ1.11
Level HL only Paper 1 Time zone TZ1
Command term Factorize Question number 11 Adapted from N/A

Question

Consider the function \(f(x) = \frac{1}{{{x^2} + 3x + 2}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne - 2,{\text{ }}x \ne - 1\).

Express \({x^2} + 3x + 2\) in the form \({(x + h)^2} + k\).

[1]
a.i.

Factorize \({x^2} + 3x + 2\).

[1]
a.ii.

Sketch the graph of \(f(x)\), indicating on it the equations of the asymptotes, the coordinates of the \(y\)-intercept and the local maximum.

[5]
b.

Show that \(\frac{1}{{x + 1}} - \frac{1}{{x + 2}} = \frac{1}{{{x^2} + 3x + 2}}\).

[1]
c.

Hence find the value of \(p\) if \(\int_0^1 {f(x){\text{d}}x = \ln (p)} \).

[4]
d.

Sketch the graph of \(y = f\left( {\left| x \right|} \right)\).

[2]
e.

Determine the area of the region enclosed between the graph of \(y = f\left( {\left| x \right|} \right)\), the \(x\)-axis and the lines with equations \(x = - 1\) and \(x = 1\).

[3]
f.

Markscheme

\({x^2} + 3x + 2 = {\left( {x + \frac{3}{2}} \right)^2} - \frac{1}{4}\)     A1

[1 mark]

a.i.

\({x^2} + 3x + 2 = (x + 2)(x + 1)\)     A1

[1 mark]

a.ii.

M17/5/MATHL/HP1/ENG/TZ1/B11.b/M

A1 for the shape

A1 for the equation \(y = 0\)

A1 for asymptotes \(x = - 2\) and \(x = - 1\)

A1 for coordinates \(\left( { - \frac{3}{2},{\text{ }} - 4} \right)\)

A1 \(y\)-intercept \(\left( {0,{\text{ }}\frac{1}{2}} \right)\)

[5 marks]

b.

\(\frac{1}{{x + 1}} - \frac{1}{{x + 2}} = \frac{{(x + 2) - (x + 1)}}{{(x + 1)(x + 2)}}\)     M1

\( = \frac{1}{{{x^2} + 3x + 2}}\)     AG

[1 mark]

c.

\(\int\limits_0^1 {\frac{1}{{x + 1}} - \frac{1}{{x + 2}}{\text{d}}x} \)

\( = \left[ {\ln (x + 1) - \ln (x + 2)} \right]_0^1\)     A1

\( = \ln 2 - \ln 3 - \ln 1 + \ln 2\)     M1

\( = \ln \left( {\frac{4}{3}} \right)\)     M1A1

\(\therefore p = \frac{4}{3}\)

[4 marks]

d.

M17/5/MATHL/HP1/ENG/TZ1/B11.e/M

symmetry about the \(y\)-axis     M1

correct shape     A1

 

Note:     Allow FT from part (b).

 

[2 marks]

e.

\(2\int_0^1 {f(x){\text{d}}x} \)     (M1)(A1)

\( = 2\ln \left( {\frac{4}{3}} \right)\)     A1

 

Note:     Do not award FT from part (e).

 

[3 marks]

f.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.

Syllabus sections

Topic 2 - Core: Functions and equations » 2.2 » The graph of a function; its equation \(y = f\left( x \right)\) .
Show 43 related questions

View options