Date | May 2018 | Marks available | 7 | Reference code | 18M.2.hl.TZ1.10 |
Level | HL only | Paper | 2 | Time zone | TZ1 |
Command term | Find | Question number | 10 | Adapted from | N/A |
Question
The continuous random variable X has probability density function ff given by
f(x)={3ax,0⩽x<0.5a(2−x),0.5⩽x<20,otherwise
Show that a=23.
Find P(X<1).
Given that P(s<X<0.8)=2×P(2s<X<0.8), and that 0.25 < s < 0.4 , find the value of s.
Markscheme
a[∫0.503xdx+∫20.5(2−x)dx]=1 M1
Note: Award the M1 for the total integral equalling 1, or equivalent.
a(32)=1 (M1)A1
a=23 AG
[3 marks]
EITHER
∫0.502xdx+23∫10.5(2−x)dx (M1)(A1)
=23 A1
OR
23∫21(2−x)dx=13 (M1)
so P(X<1)=23 (M1)A1
[3 marks]
P(s<X<0.8)=∫0.5s2xdx+23∫0.80.5(2−x)dx M1A1
=[x2]0.5s+0.27
0.25−s2+0.27 (A1)
P(2s<X<0.8)=23∫0.82s(2−x)dx A1
=23[2x−x22]0.82s
23(1.28−(4s−2s2))
equating
0.25−s2+0.27=43(1.28−(4s−2s2)) (A1)
attempt to solve for s (M1)
s = 0.274 A1
[7 marks]