User interface language: English | Español

Date November 2016 Marks available 2 Reference code 16N.2.hl.TZ0.1
Level HL only Paper 2 Time zone TZ0
Command term Determine Question number 1 Adapted from N/A

Question

A random variable \(X\) has a probability distribution given in the following table.

N16/5/MATHL/HP2/ENG/TZ0/01

Determine the value of \({\text{E}}({X^2})\).

[2]
a.

Find the value of \({\text{Var}}(X)\).

[3]
b.

Markscheme

\({\text{E}}({X^2}) = \Sigma {x^2} \bullet {\text{P}}(X = x) = 10.37{\text{ }}( = 10.4{\text{ 3 sf)}}\)    (M1)A1

[2 marks]

a.

METHOD 1

\({\text{sd}}(X) = 1.44069 \ldots \)    (M1)(A1)

\({\text{Var}}(X) = 2.08{\text{ }}( = 2.0756)\)    A1

METHOD 2

\({\text{E}}(X) = 2.88{\text{ }}( = 0.06 + 0.27 + 0.5 + 0.98 + 0.63 + 0.44)\)    (A1)

use of \({\text{Var}}(X) = {\text{E}}({X^2}) - {\left( {{\text{E}}(X)} \right)^2}\)     (M1)

 

Note: Award (M1) only if \({\left( {{\text{E}}(X)} \right)^2}\) is used correctly.

 

\(\left( {{\text{Var}}(X) = 10.37 - 8.29} \right)\)

\({\text{Var}}(X) = 2.08{\text{ }}( = 2.0756)\)    A1

 

Note: Accept 2.11.

 

METHOD 3

\({\text{E}}(X) = 2.88{\text{ }}( = 0.06 + 0.27 + 0.5 + 0.98 + 0.63 + 0.44)\)    (A1)

use of \({\text{Var}}(X) = {\text{E}}\left( {{{\left( {X - {\text{E}}(X)} \right)}^2}} \right)\)     (M1)

\((0.679728 +  \ldots  + 0.549152)\)

\({\text{Var}}(E) = 2.08{\text{ }}( = 2.0756)\)    A1

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5 - Core: Statistics and probability » 5.5 » Concept of discrete and continuous random variables and their probability distributions.
Show 35 related questions

View options