Processing math: 100%

User interface language: English | Español

Date November 2016 Marks available 5 Reference code 16N.1.hl.TZ0.1
Level HL only Paper 1 Time zone TZ0
Command term Find Question number 1 Adapted from N/A

Question

Find the coordinates of the point of intersection of the planes defined by the equations x+y+z=3, xy+z=5 and x+y+2z=6.

Markscheme

METHOD 1

for eliminating one variable from two equations     (M1)

eg, {(x+y+z=3)2x+2z=82x+3z=11     A1A1

for finding correctly one coordinate

eg, {(x+y+z=3)(2x+2z=8)z=3     A1

for finding correctly the other two coordinates     A1

{x=1y=1z=3

the intersection point has coordinates (1, 1, 3)

METHOD 2

for eliminating two variables from two equations or using row reduction     (M1)

eg, {(x+y+z=3)2=2z=3 or (111020001|323)     A1A1

for finding correctly the other coordinates     A1A1

{x=1y=1(z=3) or (100010001|113)

the intersection point has coordinates (1, 1, 3)

METHOD 3

|111111112|=2    (A1)

attempt to use Cramer’s rule     M1

x=|311511612|2=22=1    A1

y=|131151162|2=22=1    A1

z=|113115116|2=62=3    A1

 

Note:     Award M1 only if candidate attempts to determine at least one of the variables using this method.

 

[5 marks]

Examiners report

[N/A]

Syllabus sections

Topic 5 - Core: Statistics and probability » 5.5 » Concept of discrete and continuous random variables and their probability distributions.
Show 35 related questions

View options