User interface language: English | Español

Date May 2018 Marks available 3 Reference code 18M.2.hl.TZ1.10
Level HL only Paper 2 Time zone TZ1
Command term Show that Question number 10 Adapted from N/A

Question

The continuous random variable X has probability density function \(f\) given by

\[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{3ax}&,&{0 \leqslant x < 0.5} \\
{a\left( {2 - x} \right)}&,&{0.5 \leqslant x < 2} \\
0&,&{{\text{otherwise}}}
\end{array}} \right.\]

 

Show that \(a = \frac{2}{3}\).

[3]
a.

Find \({\text{P}}\left( {X < 1} \right)\).

[3]
b.

Given that \({\text{P}}\left( {s < X < 0.8} \right) = 2 \times {\text{P}}\left( {2s < X < 0.8} \right)\), and that 0.25 < s < 0.4 , find the value of s.

[7]
c.

Markscheme

 

\(a\left[ {\int_0^{0.5} {3x\,{\text{d}}x}  + \int_{0.5}^2 {\left( {2 - x} \right)} \,{\text{d}}x} \right] = 1\)     M1

Note: Award the M1 for the total integral equalling 1, or equivalent.

\(a\left( {\frac{3}{2}} \right) = 1\)     (M1)A1

\(a = \frac{2}{3}\)     AG

[3 marks]

a.

EITHER

\(\int_0^{0.5} {2x\,{\text{d}}x}  + \frac{2}{3}\int_{0.5}^1 {\left( {2 - x} \right)} \,{\text{d}}x\)     (M1)(A1)

\( = \frac{2}{3}\)     A1

OR

\(\frac{2}{3}\int_1^2 {\left( {2 - x} \right)} \,{\text{d}}x = \frac{1}{3}\)     (M1)

so \({\text{P}}\left( {X < 1} \right) = \frac{2}{3}\)      (M1)A1

[3 marks]

b.

\({\text{P}}\left( {s < X < 0.8} \right) = \int_s^{0.5} {2x\,{\text{d}}x}  + \frac{2}{3}\int_{0.5}^{0.8} {\left( {2 - x} \right)} \,{\text{d}}x\)     M1A1

\( = \left[ {{x^2}} \right]_s^{0.5} + 0.27\)

\(0.25 - {s^2} + 0.27\)     (A1)

\({\text{P}}\left( {2s < X < 0.8} \right) = \frac{2}{3}\int_{2s}^{0.8} {\left( {2 - x} \right)} \,{\text{d}}x\)     A1

\( = \frac{2}{3}\left[ {2x - \frac{{{x^2}}}{2}} \right]_{2s}^{0.8}\)

\(\frac{2}{3}\left( {1.28 - \left( {4s - 2{s^2}} \right)} \right)\)

equating

\(0.25 - {s^2} + 0.27 = \frac{4}{3}\left( {1.28 - \left( {4s - 2{s^2}} \right)} \right)\)     (A1)

attempt to solve for s      (M1)

s = 0.274      A1

[7 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 5 - Core: Statistics and probability » 5.5 » Concept of discrete and continuous random variables and their probability distributions.
Show 35 related questions

View options