Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2018 Marks available 3 Reference code 18M.2.hl.TZ1.10
Level HL only Paper 2 Time zone TZ1
Command term Show that Question number 10 Adapted from N/A

Question

The continuous random variable X has probability density function f given by

f(x)={3ax,0

 

Show that a = \frac{2}{3}.

[3]
a.

Find {\text{P}}\left( {X < 1} \right).

[3]
b.

Given that {\text{P}}\left( {s < X < 0.8} \right) = 2 \times {\text{P}}\left( {2s < X < 0.8} \right), and that 0.25 < s < 0.4 , find the value of s.

[7]
c.

Markscheme

 

a\left[ {\int_0^{0.5} {3x\,{\text{d}}x}  + \int_{0.5}^2 {\left( {2 - x} \right)} \,{\text{d}}x} \right] = 1     M1

Note: Award the M1 for the total integral equalling 1, or equivalent.

a\left( {\frac{3}{2}} \right) = 1     (M1)A1

a = \frac{2}{3}     AG

[3 marks]

a.

EITHER

\int_0^{0.5} {2x\,{\text{d}}x}  + \frac{2}{3}\int_{0.5}^1 {\left( {2 - x} \right)} \,{\text{d}}x     (M1)(A1)

= \frac{2}{3}     A1

OR

\frac{2}{3}\int_1^2 {\left( {2 - x} \right)} \,{\text{d}}x = \frac{1}{3}     (M1)

so {\text{P}}\left( {X < 1} \right) = \frac{2}{3}      (M1)A1

[3 marks]

b.

{\text{P}}\left( {s < X < 0.8} \right) = \int_s^{0.5} {2x\,{\text{d}}x}  + \frac{2}{3}\int_{0.5}^{0.8} {\left( {2 - x} \right)} \,{\text{d}}x     M1A1

= \left[ {{x^2}} \right]_s^{0.5} + 0.27

0.25 - {s^2} + 0.27     (A1)

{\text{P}}\left( {2s < X < 0.8} \right) = \frac{2}{3}\int_{2s}^{0.8} {\left( {2 - x} \right)} \,{\text{d}}x     A1

= \frac{2}{3}\left[ {2x - \frac{{{x^2}}}{2}} \right]_{2s}^{0.8}

\frac{2}{3}\left( {1.28 - \left( {4s - 2{s^2}} \right)} \right)

equating

0.25 - {s^2} + 0.27 = \frac{4}{3}\left( {1.28 - \left( {4s - 2{s^2}} \right)} \right)     (A1)

attempt to solve for s      (M1)

s = 0.274      A1

[7 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 5 - Core: Statistics and probability » 5.5 » Concept of discrete and continuous random variables and their probability distributions.
Show 35 related questions

View options