Date | May 2018 | Marks available | 3 | Reference code | 18M.2.hl.TZ1.10 |
Level | HL only | Paper | 2 | Time zone | TZ1 |
Command term | Find | Question number | 10 | Adapted from | N/A |
Question
The continuous random variable X has probability density function f given by
f(x)={3ax,0⩽
Show that a = \frac{2}{3}.
Find {\text{P}}\left( {X < 1} \right).
Given that {\text{P}}\left( {s < X < 0.8} \right) = 2 \times {\text{P}}\left( {2s < X < 0.8} \right), and that 0.25 < s < 0.4 , find the value of s.
Markscheme
a\left[ {\int_0^{0.5} {3x\,{\text{d}}x} + \int_{0.5}^2 {\left( {2 - x} \right)} \,{\text{d}}x} \right] = 1 M1
Note: Award the M1 for the total integral equalling 1, or equivalent.
a\left( {\frac{3}{2}} \right) = 1 (M1)A1
a = \frac{2}{3} AG
[3 marks]
EITHER
\int_0^{0.5} {2x\,{\text{d}}x} + \frac{2}{3}\int_{0.5}^1 {\left( {2 - x} \right)} \,{\text{d}}x (M1)(A1)
= \frac{2}{3} A1
OR
\frac{2}{3}\int_1^2 {\left( {2 - x} \right)} \,{\text{d}}x = \frac{1}{3} (M1)
so {\text{P}}\left( {X < 1} \right) = \frac{2}{3} (M1)A1
[3 marks]
{\text{P}}\left( {s < X < 0.8} \right) = \int_s^{0.5} {2x\,{\text{d}}x} + \frac{2}{3}\int_{0.5}^{0.8} {\left( {2 - x} \right)} \,{\text{d}}x M1A1
= \left[ {{x^2}} \right]_s^{0.5} + 0.27
0.25 - {s^2} + 0.27 (A1)
{\text{P}}\left( {2s < X < 0.8} \right) = \frac{2}{3}\int_{2s}^{0.8} {\left( {2 - x} \right)} \,{\text{d}}x A1
= \frac{2}{3}\left[ {2x - \frac{{{x^2}}}{2}} \right]_{2s}^{0.8}
\frac{2}{3}\left( {1.28 - \left( {4s - 2{s^2}} \right)} \right)
equating
0.25 - {s^2} + 0.27 = \frac{4}{3}\left( {1.28 - \left( {4s - 2{s^2}} \right)} \right) (A1)
attempt to solve for s (M1)
s = 0.274 A1
[7 marks]