Processing math: 100%

User interface language: English | Español

Date May 2018 Marks available 4 Reference code 18M.1.hl.TZ1.9
Level HL only Paper 1 Time zone TZ1
Command term Sketch Question number 9 Adapted from N/A

Question

Let f(x)=23x52x3,xR,x0.

The graph of y=f(x) has a local maximum at A. Find the coordinates of A.

[5]
a.

Show that there is exactly one point of inflexion, B, on the graph of y=f(x).

[5]
b.i.

The coordinates of B can be expressed in the form B(2a,b×23a) where a, bQ. Find the value of a and the value of b.

[3]
b.ii.

Sketch the graph of y=f(x) showing clearly the position of the points A and B.

[4]
c.

Markscheme

attempt to differentiate      (M1)

f(x)=3x43x     A1

Note: Award M1 for using quotient or product rule award A1 if correct derivative seen even in unsimplified form, for example f(x)=15x4×2x36x2(23x5)(2x3)2.

3x43x=0     M1

x5=1x=1     A1

A(1,52)     A1

[5 marks]

a.

f(x)=0     M1

f(x)=12x53(=0)     A1

Note: Award A1 for correct derivative seen even if not simplified.

x=54(=225)     A1

hence (at most) one point of inflexion      R1

Note: This mark is independent of the two A1 marks above. If they have shown or stated their equation has only one solution this mark can be awarded.

f(x) changes sign at x=54(=225)      R1

so exactly one point of inflexion

[5 marks]

b.i.

x=54=225(a=25)      A1

f(225)=23×222×265=5×265(b=5)     (M1)A1

Note: Award M1 for the substitution of their value for x into f(x).

[3 marks]

b.ii.

A1A1A1A1

A1 for shape for x < 0
A1 for shape for x > 0
A1 for maximum at A
A1 for POI at B.

Note: Only award last two A1s if A and B are placed in the correct quadrants, allowing for follow through.

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.

Syllabus sections

Topic 2 - Core: Functions and equations » 2.2 » The graph of a function; its equation y=f(x) .
Show 56 related questions

View options