Processing math: 100%

User interface language: English | Español

Date November 2017 Marks available 6 Reference code 17N.3ca.hl.TZ0.2
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Solve Question number 2 Adapted from N/A

Question

Consider the differential equation dydx+xx2+1y=x where y=1 when x=0.

Show that x2+1 is an integrating factor for this differential equation.

[4]
a.

Solve the differential equation giving your answer in the form y=f(x).

[6]
b.

Markscheme

METHOD 1

integrating factor =exx2+1dx     (M1)

xx2+1dx=12ln(x2+1)     (M1)

 

Note:     Award M1 for use of u=x2+1 for example or f(x)f(x)dx=lnf(x).

 

integrating factor =e12ln(x2+1)     A1

=eln(x2+1)     A1

 

Note:     Award A1 for elnu where u=x2+1.

 

=x2+1     AG

 

METHOD 2

ddx(yx2+1)=dydxx2+1+xx2+1y     M1A1

x2+1(dydx+xx2+1y)     M1A1

 

Note:     Award M1 for attempting to express in the form x2+1×(LHS of de).

 

so x2+1 is an integrating factor for this differential equation     AG

[4 marks]

a.

x2+1dydx+xx2+1y=xx2+1 (or equivalent)     (M1)

ddx(yx2+1)=xx2+1

yx2+1=xx2+1dx (y=1x2+1xx2+1dx)     A1

=13(x2+1)32+C     (M1)A1

 

Note:     Award M1 for using an appropriate substitution.

 

Note:     Condone the absence of C.

 

substituting x=0, y=1C=23     M1

 

Note:     Award M1 for attempting to find their value of C.

 

y=13(x2+1)+23x2+1 (y=(x2+1)32+23x2+1)     A1

[6 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 9 - Option: Calculus » 9.5
Show 66 related questions

View options