Processing math: 100%

User interface language: English | Español

Date None Specimen Marks available 6 Reference code SPNone.3ca.hl.TZ0.3
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Find Question number 3 Adapted from N/A

Question

Consider the differential equation

dydx=2ex+ytanx , given that y = 1 when x = 0 .

The domain of the function y is [0,π2[.

By finding the values of successive derivatives when x = 0 , find the Maclaurin series for y as far as the term in x3 .

[6]
a.

(i)     Differentiate the function ex(sinx+cosx) and hence show that

excosxdx=12ex(sinx+cosx)+c.

(ii)     Find an integrating factor for the differential equation and hence find the solution in the form y=f(x) .

[9]
b.

Markscheme

we note that y(0)=1 and y(0)=2     A1

y=2ex+ytanx+ysec2x     M1

y(0)=3     A1

y=2ex+ytanx+2ysec2x+2ysec2xtanx     M1

y(0)=6     A1

the maclaurin series solution is therefore

y=1+2x+3x22+x3+     A1

[6 marks]

a.

(i)     ddx(ex(sinx+cosx))=ex(sinx+cosx)+ex(cosxsinx)     M1

=2excosx     A1

it follows that

excosxdx=12ex(sinx+cosx)+c     AG

 

(ii)     the differential equation can be written as

dydxytanx=2ex     M1

IF=etanxdx=elncosx=cosx     M1A1

cosxdydxysinx=2excosx     M1

integrating,

ycosx=ex(sinx+cosx)+C     A1

y = 1 when x = 0 gives C = 0     M1

therefore

y=ex(1+tanx)     A1

[9 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 9 - Option: Calculus » 9.5 » First-order differential equations.
Show 43 related questions

View options