Date | None Specimen | Marks available | 9 | Reference code | SPNone.3ca.hl.TZ0.3 |
Level | HL only | Paper | Paper 3 Calculus | Time zone | TZ0 |
Command term | Find, Hence, and Show that | Question number | 3 | Adapted from | N/A |
Question
Consider the differential equation
dydx=2ex+ytanx , given that y = 1 when x = 0 .
The domain of the function y is [0,π2[.
By finding the values of successive derivatives when x = 0 , find the Maclaurin series for y as far as the term in x3 .
(i) Differentiate the function ex(sinx+cosx) and hence show that
∫excosxdx=12ex(sinx+cosx)+c.
(ii) Find an integrating factor for the differential equation and hence find the solution in the form y=f(x) .
Markscheme
we note that y(0)=1 and y′(0)=2 A1
y″ M1
y''(0) = 3 A1
y''' = 2{{\text{e}}^x} + y''\tan x + 2y'{\sec ^2}x + 2y{\sec ^2}x\tan x M1
y'''(0) = 6 A1
the maclaurin series solution is therefore
y = 1 + 2x + \frac{{3{x^2}}}{2} + {x^3} + \ldots A1
[6 marks]
(i) \frac{{\text{d}}}{{{\text{d}}x}}\left( {{{\text{e}}^x}(\sin x + \cos x)} \right) = {{\text{e}}^x}(\sin x + \cos x) + {{\text{e}}^x}(\cos x - \sin x) M1
= 2{{\text{e}}^x}\cos x A1
it follows that
\int {{{\text{e}}^x}\cos x{\text{d}}x = \frac{1}{2}{{\text{e}}^x}(\sin x + \cos x) + c} AG
(ii) the differential equation can be written as
\frac{{{\text{d}}y}}{{{\text{d}}x}} - y\tan x = 2{{\text{e}}^x} M1
{\text{IF}} = {{\text{e}}^{\int { - \tan x{\text{d}}x} }} = {{\text{e}}^{\ln \cos x}} = \cos x M1A1
\cos x\frac{{{\text{d}}y}}{{{\text{d}}x}} - y\sin x = 2{{\text{e}}^x}\cos x M1
integrating,
y\cos x = {{\text{e}}^x}(\sin x + \cos x) + C A1
y = 1 when x = 0 gives C = 0 M1
therefore
y = {{\text{e}}^x}(1 + \tan x) A1
[9 marks]