Date | None Specimen | Marks available | 9 | Reference code | SPNone.3ca.hl.TZ0.3 |
Level | HL only | Paper | Paper 3 Calculus | Time zone | TZ0 |
Command term | Find, Hence, and Show that | Question number | 3 | Adapted from | N/A |
Question
Consider the differential equation
\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 2{{\text{e}}^x} + y\tan x\) , given that y = 1 when x = 0 .
The domain of the function y is \(\left[ {0,\frac{\pi }{2}} \right[\).
By finding the values of successive derivatives when x = 0 , find the Maclaurin series for y as far as the term in \({x^3}\) .
(i) Differentiate the function \({{\text{e}}^x}(\sin x + \cos x)\) and hence show that
\[\int {{{\text{e}}^x}\cos x{\text{d}}x = \frac{1}{2}{{\text{e}}^x}(\sin x + \cos x) + c} .\]
(ii) Find an integrating factor for the differential equation and hence find the solution in the form \(y = f(x)\) .
Markscheme
we note that \(y(0) = 1\) and \(y'(0) = 2\) A1
\(y'' = 2{{\text{e}}^x} + y'\tan x + y{\sec ^2}x\) M1
\(y''(0) = 3\) A1
\(y''' = 2{{\text{e}}^x} + y''\tan x + 2y'{\sec ^2}x + 2y{\sec ^2}x\tan x\) M1
\(y'''(0) = 6\) A1
the maclaurin series solution is therefore
\(y = 1 + 2x + \frac{{3{x^2}}}{2} + {x^3} + \ldots \) A1
[6 marks]
(i) \(\frac{{\text{d}}}{{{\text{d}}x}}\left( {{{\text{e}}^x}(\sin x + \cos x)} \right) = {{\text{e}}^x}(\sin x + \cos x) + {{\text{e}}^x}(\cos x - \sin x)\) M1
\( = 2{{\text{e}}^x}\cos x\) A1
it follows that
\(\int {{{\text{e}}^x}\cos x{\text{d}}x = \frac{1}{2}{{\text{e}}^x}(\sin x + \cos x) + c} \) AG
(ii) the differential equation can be written as
\(\frac{{{\text{d}}y}}{{{\text{d}}x}} - y\tan x = 2{{\text{e}}^x}\) M1
\({\text{IF}} = {{\text{e}}^{\int { - \tan x{\text{d}}x} }} = {{\text{e}}^{\ln \cos x}} = \cos x\) M1A1
\(\cos x\frac{{{\text{d}}y}}{{{\text{d}}x}} - y\sin x = 2{{\text{e}}^x}\cos x\) M1
integrating,
\(y\cos x = {{\text{e}}^x}(\sin x + \cos x) + C\) A1
y = 1 when x = 0 gives C = 0 M1
therefore
\(y = {{\text{e}}^x}(1 + \tan x)\) A1
[9 marks]