Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date None Specimen Marks available 9 Reference code SPNone.3ca.hl.TZ0.3
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Find, Hence, and Show that Question number 3 Adapted from N/A

Question

Consider the differential equation

dydx=2ex+ytanx , given that y = 1 when x = 0 .

The domain of the function y is [0,π2[.

By finding the values of successive derivatives when x = 0 , find the Maclaurin series for y as far as the term in x3 .

[6]
a.

(i)     Differentiate the function ex(sinx+cosx) and hence show that

excosxdx=12ex(sinx+cosx)+c.

(ii)     Find an integrating factor for the differential equation and hence find the solution in the form y=f(x) .

[9]
b.

Markscheme

we note that y(0)=1 and y(0)=2     A1

y     M1

y''(0) = 3     A1

y''' = 2{{\text{e}}^x} + y''\tan x + 2y'{\sec ^2}x + 2y{\sec ^2}x\tan x     M1

y'''(0) = 6     A1

the maclaurin series solution is therefore

y = 1 + 2x + \frac{{3{x^2}}}{2} + {x^3} +  \ldots     A1

[6 marks]

a.

(i)     \frac{{\text{d}}}{{{\text{d}}x}}\left( {{{\text{e}}^x}(\sin x + \cos x)} \right) = {{\text{e}}^x}(\sin x + \cos x) + {{\text{e}}^x}(\cos x - \sin x)     M1

= 2{{\text{e}}^x}\cos x     A1

it follows that

\int {{{\text{e}}^x}\cos x{\text{d}}x = \frac{1}{2}{{\text{e}}^x}(\sin x + \cos x) + c}     AG

 

(ii)     the differential equation can be written as

\frac{{{\text{d}}y}}{{{\text{d}}x}} - y\tan x = 2{{\text{e}}^x}     M1

{\text{IF}} = {{\text{e}}^{\int { - \tan x{\text{d}}x} }} = {{\text{e}}^{\ln \cos x}} = \cos x     M1A1

\cos x\frac{{{\text{d}}y}}{{{\text{d}}x}} - y\sin x = 2{{\text{e}}^x}\cos x     M1

integrating,

y\cos x = {{\text{e}}^x}(\sin x + \cos x) + C     A1

y = 1 when x = 0 gives C = 0     M1

therefore

y = {{\text{e}}^x}(1 + \tan x)     A1

[9 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 9 - Option: Calculus » 9.5 » First-order differential equations.
Show 43 related questions

View options