Date | November 2011 | Marks available | 4 | Reference code | 11N.1.hl.TZ0.13 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Show that | Question number | 13 | Adapted from | N/A |
Question
The curve C with equation \(y = f(x)\) satisfies the differential equation
\[\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{y}{{\ln y}}(x + 2),{\text{ }}y > 1,\]
and y = e when x = 2.
Find the equation of the tangent to C at the point (2, e).
Find \(f(x)\).
Determine the largest possible domain of f.
Show that the equation \(f(x) = f'(x)\) has no solution.
Markscheme
\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{\text{e}}}{{\ln {\text{e}}}}(2 + 2) = 4{\text{e}}\) A1
at (2, e) the tangent line is \(y - {\text{e}} = 4{\text{e}}(x - 2)\) M1
hence \(y = 4{\text{e}}x - 7{\text{e}}\) A1
[3 marks]
\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{y}{{\ln y}}(x + 2) \Rightarrow \frac{{\ln y}}{y}{\text{d}}y = (x + 2){\text{d}}x\) M1
\(\int {\frac{{\ln y}}{y}{\text{d}}y = \int {(x + 2){\text{d}}x} } \)
using substitution \(u = \ln y;{\text{ d}}u = \frac{1}{y}{\text{d}}y\) (M1)(A1)
\( \Rightarrow \int {\frac{{\ln y}}{y}{\text{d}}y = \int {u{\text{d}}u = \frac{1}{2}{u^2}} } \) (A1)
\( \Rightarrow \frac{{{{(\ln y)}^2}}}{2} = \frac{{{x^2}}}{2} + 2x + c\) A1A1
at (2, e), \(\frac{{{{(\ln {\text{e}})}^2}}}{2} = 6 + c\) M1
\( \Rightarrow c = - \frac{{11}}{2}\) A1
\( \Rightarrow \frac{{{{(\ln y)}^2}}}{2} = \frac{{{x^2}}}{2} + 2x - \frac{{11}}{2} \Rightarrow {(\ln y)^2} = {x^2} + 4x - 11\)
\(\ln y = \pm \sqrt {{x^2} + 4x - 11} \Rightarrow y = {{\text{e}}^{ \pm \sqrt {{x^2} + 4x - 11} }}\) M1A1
since y > 1, \(f(x) = {{\text{e}}^{\sqrt {{x^2} + 4x - 11} }}\) R1
Note:M1 for attempt to make y the subject.
[11 marks]
EITHER
\({x^2} + 4x - 11 > 0\) A1
using the quadratic formula M1
critical values are \(\frac{{ - 4 \pm \sqrt {60} }}{2}{\text{ }}\left( { = - 2 \pm \sqrt {15} } \right)\) A1
using a sign diagram or algebraic solution M1
\(x < - 2 - \sqrt {15} ;{\text{ }}x > - 2 + \sqrt {15} \) A1A1
OR
\({x^2} + 4x - 11 > 0\) A1
by methods of completing the square M1
\({(x + 2)^2} > 15\) A1
\( \Rightarrow x + 2 < - \sqrt {15} {\text{ or }}x + 2 > \sqrt {15} \) (M1)
\(x < - 2 - \sqrt {15} ;{\text{ }}x > - 2 + \sqrt {15} \) A1A1
[6 marks]
\(f(x) = f'(x) \Rightarrow f(x) = \frac{{f(x)}}{{\ln f(x)}}(x + 2)\) M1
\( \Rightarrow \ln \left( {f(x)} \right) = x + 2\,\,\,\,\,\left( { \Rightarrow x + 2 = \sqrt {{x^2} + 4x - 11} } \right)\) A1
\( \Rightarrow {(x + 2)^2} = {x^2} + 4x - 11 \Rightarrow {x^2} + 4x + 4 = {x^2} + 4x - 11\) A1
\( \Rightarrow 4 = - 11,{\text{ hence }}f(x) \ne f'(x)\) R1AG
[4 marks]
Examiners report
Nearly always correctly answered.
Most candidates separated the variables and attempted the integrals. Very few candidates made use of the condition y > 1, so losing 2 marks.
Part (c) was often well answered, sometimes with follow through.
Only the best candidates were successful on part (d).