Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2017 Marks available 10 Reference code 17M.3ca.hl.TZ0.4
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Solve, Hence or otherwise, and Give Question number 4 Adapted from N/A

Question

Consider the differential equation

dydx=f(yx), x>0.

Use the substitution y=vx to show that the general solution of this differential equation is

dvf(v)v=lnx+ Constant.

[3]
a.

Hence, or otherwise, solve the differential equation

dydx=x2+3xy+y2x2, x>0,

given that y=1 when x=1. Give your answer in the form y=g(x).

[10]
b.

Markscheme

y=vxdydx=v+xdvdx     M1

the differential equation becomes

v+xdvdx=f(v)     A1

dvf(v)v=dvx     A1

integrating, Constant dvf(v)v=lnx+ Constant     AG

[3 marks]

a.

EITHER

f(v)=1+3v+v2     (A1)

(dvf(v)v=)dv1+3v+v2v=lnx+C     M1A1

dv(1+v)2=(lnx+C)     A1

 

Note:     A1 is for correct factorization.

 

11+v(=lnx+C)     A1

OR

v+xdvdx=1+3v+v2     A1

dv1+2v+v2=1xdx     M1

dv(1+v)2(=1xdx)     (A1)

 

Note:     A1 is for correct factorization.

 

11+v=lnx(+C)     A1A1

THEN

substitute y=1 or v=1 when x=1     (M1)

therefore C=12     A1

 

Note:     This A1 can be awarded anywhere in their solution.

 

substituting for v,

1(1+yx)=lnx12     M1

 

Note:     Award for correct substitution of yx into their expression.

 

1+yx=112lnx     (A1)

 

Note:     Award for any rearrangement of a correct expression that has y in the numerator.

 

y=x(1(12lnx)1)(or equivalent)     A1

(=x(1+2lnx12lnx))

[10 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 9 - Option: Calculus » 9.5
Show 66 related questions

View options