User interface language: English | Español

Date May 2014 Marks available 12 Reference code 14M.3ca.hl.TZ0.2
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Find, Show that, and Sketch Question number 2 Adapted from N/A

Question

Consider the functions f(x)=(lnx)2, x>1f(x)=(lnx)2, x>1 and g(x)=ln(f(x)), x>1g(x)=ln(f(x)), x>1.

(i)     Find f(x).

(ii)     Find g(x).

(iii)     Hence, show that g(x) is increasing on ]1, [.

[5]
a.

Consider the differential equation

(lnx)dydx+2xy=2x1(lnx), x>1.

(i)     Find the general solution of the differential equation in the form y=h(x).

(ii)     Show that the particular solution passing through the point with coordinates (e, e2) is given by y=x2x+e(lnx)2.

(iii)     Sketch the graph of your solution for x>1, clearly indicating any asymptotes and any maximum or minimum points.

[12]
b.

Markscheme

(i)     attempt at chain rule     (M1)

f(x)=2lnxx     A1

(ii)     attempt at chain rule     (M1)

g(x)=2xlnx     A1

(iii)     g(x) is positive on ]1, [     A1

so g(x) is increasing on ]1, [     AG

[5 marks]

a.

(i)     rearrange in standard form:

dydx+2xlnxy=2x1(lnx)2, x>1     (A1)

integrating factor:

e2xlnxdx     (M1)

=eln((lnx)2)

=(lnx)2     (A1)

multiply by integrating factor     (M1)

(lnx)2dydx+2lnxxy=2x1

ddx(y(lnx)2)=2x1 (or y(lnx)2=2x1dx)     M1

attempt to integrate:     M1

(lnx)2y=x2x+c

y=x2x+c(lnx)2     A1

(ii)     attempt to use the point (e, e2) to determine c:     M1

eg, (lne)2e2=e2e+c or e2=e2e+c(lne)2 or e2=e2e+c

c=e     A1

y=x2x+e(lnx)2     AG

(iii)     

graph with correct shape     A1

minimum at x=3.1 (accept answers to a minimum of 2 s.f)     A1

asymptote shown at x=1     A1

 

Note: y-coordinate of minimum not required for A1;

     Equation of asymptote not required for A1 if VA appears on the sketch.

     Award A0 for asymptotes if more than one asymptote are shown

 

[12 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 9 - Option: Calculus » 9.5 » First-order differential equations.
Show 43 related questions

View options