User interface language: English | Español

Date November 2011 Marks available 11 Reference code 11N.1.hl.TZ0.13
Level HL only Paper 1 Time zone TZ0
Command term Find Question number 13 Adapted from N/A

Question

The curve C with equation y=f(x)y=f(x) satisfies the differential equation

dydx=ylny(x+2), y>1,

and y = e when x = 2.

Find the equation of the tangent to C at the point (2, e).

[3]
a.

Find f(x).

[11]
b.

Determine the largest possible domain of f.

[6]
c.

Show that the equation f(x)=f(x) has no solution.

[4]
d.

Markscheme

dydx=elne(2+2)=4e     A1

at (2, e) the tangent line is ye=4e(x2)     M1

hence y=4ex7e     A1

[3 marks]

a.

dydx=ylny(x+2)lnyydy=(x+2)dx     M1

lnyydy=(x+2)dx

using substitution u=lny; du=1ydy     (M1)(A1)

lnyydy=udu=12u2     (A1)

(lny)22=x22+2x+c     A1A1

at (2, e), (lne)22=6+c     M1

c=112     A1

(lny)22=x22+2x112(lny)2=x2+4x11

lny=±x2+4x11y=e±x2+4x11     M1A1

since y > 1, f(x)=ex2+4x11     R1

Note:M1 for attempt to make y the subject.

 

[11 marks]

b.

EITHER

x2+4x11>0     A1

using the quadratic formula     M1

critical values are 4±602 (=2±15)     A1

using a sign diagram or algebraic solution     M1

x<215; x>2+15     A1A1

OR

x2+4x11>0     A1

by methods of completing the square     M1

(x+2)2>15     A1

x+2<15 or x+2>15     (M1)

x<215; x>2+15     A1A1

[6 marks]

c.

f(x)=f(x)f(x)=f(x)lnf(x)(x+2)     M1

ln(f(x))=x+2(x+2=x2+4x11)     A1

(x+2)2=x2+4x11x2+4x+4=x2+4x11     A1

4=11, hence f(x)f(x)     R1AG

[4 marks]

d.

Examiners report

Nearly always correctly answered.

a.

Most candidates separated the variables and attempted the integrals. Very few candidates made use of the condition y > 1, so losing 2 marks.

b.

Part (c) was often well answered, sometimes with follow through.

c.

Only the best candidates were successful on part (d).

d.

Syllabus sections

Topic 9 - Option: Calculus » 9.5 » First-order differential equations.
Show 43 related questions

View options