User interface language: English | Español

Date None Specimen Marks available 7 Reference code SPNone.3ca.hl.TZ0.2
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Find Question number 2 Adapted from N/A

Question

Consider the differential equation

\[x\frac{{{\text{d}}y}}{{{\text{d}}x}} = y + \sqrt {{x^2} - {y^2}} ,{\text{ }}x > 0,{\text{ }}{x^2} > {y^2}.\]

Show that this is a homogeneous differential equation.

[1]
a.

Find the general solution, giving your answer in the form \(y = f(x)\) .

[7]
b.

Markscheme

the equation can be rewritten as

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{y + \sqrt {{x^2} - {y^2}} }}{x} = \frac{y}{x} + \sqrt {1 - {{\left( {\frac{y}{x}} \right)}^2}} \)     A1

so the differential equation is homogeneous     AG

[1 mark]

a.

put y = vx so that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = v + x\frac{{{\text{d}}v}}{{{\text{d}}x}}\)     M1A1

substituting,

\(v + x\frac{{{\text{d}}v}}{{{\text{d}}x}} = v + \sqrt {1 - {v^2}} \)     M1

\(\int {\frac{{{\text{d}}v}}{{\sqrt {1 - {v^2}} }} = \int {\frac{{{\text{d}}x}}{x}} } \)     M1

\(\arcsin v = \ln x + C\)     A1

\(\frac{y}{x} = \sin (\ln x + C)\)     A1

\(y = x\sin (\ln x + C)\)     A1

[7 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 9 - Option: Calculus » 9.5 » First-order differential equations.
Show 43 related questions

View options