Date | November 2010 | Marks available | 7 | Reference code | 10N.1.hl.TZ0.8 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Find | Question number | 8 | Adapted from | N/A |
Question
Find y in terms of x, given that \((1 + {x^3})\frac{{{\text{d}}y}}{{{\text{d}}x}} = 2{x^2}\tan y\) and \(y = \frac{\pi }{2}\) when x = 0.
Markscheme
\((1 + {x^3})\frac{{{\text{d}}y}}{{{\text{d}}x}} = 2{x^2}\tan y \Rightarrow \int {\frac{{{\text{d}}y}}{{\tan y}} = \int {\frac{{2{x^2}}}{{1 + {x^3}}}{\text{d}}x} } \) M1
\(\int {\frac{{\cos y}}{{\sin y}}{\text{d}}y = \frac{2}{3}\int {\frac{{3{x^2}}}{{1 + {x^3}}}{\text{d}}x} } \) (A1)(A1)
\(\ln \left| {\sin y} \right| = \frac{2}{3}\ln \left| {1 + {x^3}} \right| + C\) A1A1
Notes: Do not penalize omission of modulus signs.
Do not penalize omission of constant at this stage.
EITHER
\(\ln \left| {\sin \frac{\pi }{2}} \right| = \frac{2}{3}\ln \left| 1 \right| + C \Rightarrow C = 0\) M1
OR
\(\left| {\sin y} \right| = A{\left| {1 + {x^3}} \right|^{\frac{2}{3}}},{\text{ }}A = {{\text{e}}^C}\)
\(\left| {\sin \frac{\pi }{2}} \right| = A{\left| {1 + {0^3}} \right|^{\frac{2}{3}}} \Rightarrow A = 1\) M1
THEN
\(y = \arcsin \left( {{{(1 + {x^3})}^{\frac{2}{3}}}} \right)\) A1
Note: Award M0A0 if constant omitted earlier.
[7 marks]
Examiners report
Many candidates separated the variables correctly but were then unable to perform the integrations.