Processing math: 100%

User interface language: English | Español

Date November 2010 Marks available 7 Reference code 10N.1.hl.TZ0.8
Level HL only Paper 1 Time zone TZ0
Command term Find Question number 8 Adapted from N/A

Question

Find y in terms of x, given that (1+x3)dydx=2x2tany and y=π2 when x = 0.

Markscheme

(1+x3)dydx=2x2tanydytany=2x21+x3dx     M1

cosysinydy=233x21+x3dx     (A1)(A1)

ln|siny|=23ln|1+x3|+C     A1A1

Notes: Do not penalize omission of modulus signs.

Do not penalize omission of constant at this stage.

 

EITHER

ln|sinπ2|=23ln|1|+CC=0     M1

OR

|siny|=A|1+x3|23, A=eC

|sinπ2|=A|1+03|23A=1     M1

THEN

y=arcsin((1+x3)23)     A1

Note: Award M0A0 if constant omitted earlier.

 

[7 marks]

Examiners report

Many candidates separated the variables correctly but were then unable to perform the integrations.

Syllabus sections

Topic 9 - Option: Calculus » 9.5 » First-order differential equations.
Show 43 related questions

View options