Date | May 2017 | Marks available | 3 | Reference code | 17M.3ca.hl.TZ0.4 |
Level | HL only | Paper | Paper 3 Calculus | Time zone | TZ0 |
Command term | Show that | Question number | 4 | Adapted from | N/A |
Question
Consider the differential equation
\[\frac{{{\text{d}}y}}{{{\text{d}}x}} = f\left( {\frac{y}{x}} \right),{\text{ }}x > 0.\]
Use the substitution \(y = vx\) to show that the general solution of this differential equation is
\[\int {\frac{{{\text{d}}v}}{{f(v) - v}} = \ln x + } {\text{ Constant.}}\]
Hence, or otherwise, solve the differential equation
\[\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{{x^2} + 3xy + {y^2}}}{{{x^2}}},{\text{ }}x > 0,\]
given that \(y = 1\) when \(x = 1\). Give your answer in the form \(y = g(x)\).
Markscheme
\(y = vx \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = v + x\frac{{{\text{d}}v}}{{{\text{d}}x}}\) M1
the differential equation becomes
\(v + x\frac{{{\text{d}}v}}{{{\text{d}}x}} = f(v)\) A1
\(\int {\frac{{{\text{d}}v}}{{f(v) - v}} = \int {\frac{{{\text{d}}v}}{x}} } \) A1
integrating, Constant \(\int {\frac{{{\text{d}}v}}{{f(v) - v}} = \ln x + } {\text{ Constant}}\) AG
[3 marks]
EITHER
\(f(v) = 1 + 3v + {v^2}\) (A1)
\(\left( {\int {\frac{{{\text{d}}v}}{{f(v) - v}} = } } \right)\,\,\,\int {\frac{{{\text{d}}v}}{{1 + 3v + {v^2} - v}} = \ln x + C} \) M1A1
\(\int {\frac{{{\text{d}}v}}{{{{(1 + v)}^2}}} = (\ln x + C)} \) A1
Note: A1 is for correct factorization.
\( - \frac{1}{{1 + v}}\,\,\,( = \ln x + C)\) A1
OR
\(v + x\frac{{{\text{d}}v}}{{{\text{d}}x}} = 1 + 3v + {v^2}\) A1
\(\int {\frac{{{\text{d}}v}}{{1 + 2v + {v^2}}} = \int {\frac{1}{x}{\text{d}}x} } \) M1
\(\int {\frac{{{\text{d}}v}}{{{{(1 + v)}^2}}}\,\,\,\left( { = \int {\frac{1}{x}{\text{d}}x} } \right)} \) (A1)
Note: A1 is for correct factorization.
\( - \frac{1}{{1 + v}} = \ln x( + C)\) A1A1
THEN
substitute \(y = 1\) or \(v = 1\) when \(x = 1\) (M1)
therefore \(C = - \frac{1}{2}\) A1
Note: This A1 can be awarded anywhere in their solution.
substituting for \(v\),
\( - \frac{1}{{\left( {1 + \frac{y}{x}} \right)}} = \ln x - \frac{1}{2}\) M1
Note: Award for correct substitution of \(\frac{y}{x}\) into their expression.
\(1 + \frac{y}{x} = \frac{1}{{\frac{1}{2} - \ln x}}\) (A1)
Note: Award for any rearrangement of a correct expression that has \(y\) in the numerator.
\(y = x\left( {\frac{1}{{\left( {\frac{1}{2} - \ln x} \right)}} - 1} \right)\,\,\,{\text{(or equivalent)}}\) A1
\(\left( { = x\left( {\frac{{1 + 2\ln x}}{{1 - 2\ln x}}} \right)} \right)\)
[10 marks]