Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2017 Marks available 3 Reference code 17M.3sp.hl.TZ0.3
Level HL only Paper Paper 3 Statistics and probability Time zone TZ0
Command term Find Question number 3 Adapted from N/A

Question

The discrete random variable X has the following probability distribution.

P(X=x)={pqx2for x=0, 2, 4, 6 where p+q=1, 0<p<1.0otherwise

Show that the probability generating function for X is given by G(t)=P1qt2.

[2]
a.

Hence determine E(X) in terms of p and q.

[4]
b.

The random variable Y is given by Y=2X+1. Find the probability generating function for Y.

[3]
c.

Markscheme

G(t)=P(X=x)tx     (M1)

=p+pqt2+pq2t4+

(summing GP) u1=p, r=qt2     A1

=p1qt2     AG

[2 marks]

a.

G(t)=p(1qt2)2×2qt     M1A1

E(X)=G(1)     (M1)

=2pq(1q)2(=2qp)     A1

[4 marks]

b.

METHOD 1

PGF of Y=P(Y=y)ty     (M1)

=pt+pqt5+pq2t9+     A1

=pt1qt4     A1

METHOD 2

PGF of Y=E(tY)     (M1)

=E(t2X+1)

=E((t2)X)×E(t)     A1

=pt1qt4     A1

[3 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 7 - Option: Statistics and probability » 7.1
Show 61 related questions

View options