Date | May 2014 | Marks available | 16 | Reference code | 14M.3sp.hl.TZ0.4 |
Level | HL only | Paper | Paper 3 Statistics and probability | Time zone | TZ0 |
Command term | Find, Hence, Show that, and State | Question number | 4 | Adapted from | N/A |
Question
Consider the random variable \(X \sim {\text{Geo}}(p)\).
(a) State \({\text{P}}(X < 4)\).
(b) Show that the probability generating function for X is given by \({G_X}(t) = \frac{{pt}}{{1 - qt}}\), where \(q = 1 - p\).
Let the random variable \(Y = 2X\).
(c) (i) Show that the probability generating function for Y is given by \({G_Y}(t) = {G_X}({t^2})\).
(ii) By considering \({G'_Y}(1)\), show that \({\text{E}}(Y) = 2{\text{E}}(X)\).
Let the random variable \(W = 2X + 1\).
(d) (i) Find the probability generating function for W in terms of the probability generating function of Y.
(ii) Hence, show that \({\text{E}}(W) = 2{\text{E}}(X) + 1\).
Markscheme
(a) use of \({\text{P}}(X = n) = p{q^{n - 1}}{\text{ }}(q = 1 - p)\) (M1)
\({\text{P}}(X < 4) = p + pq + p{q^2}{\text{ }}\left( { = 1 - {q^3}} \right){\text{ }}\left( { = 1 - {{(1 - p)}^3}} \right){\text{ }}( = 3p - 3{p^2} + {p^3})\) A1
[2 marks]
(b) \({G_X}(t) = {\text{P}}(X = 1)t + {\text{P}}(X = 2){t^2} + \ldots \) (M1)
\( = pt + pq{t^2} + p{q^2}{t^3} + \ldots \) A1
summing an infinite geometric series M1
\( = \frac{{pt}}{{1 - qt}}\) AG
[3 marks]
(c) (i) EITHER
\({G_Y}(t) = {\text{P}}(Y = 1)t + {\text{P}}(Y = 2){t^2} + \ldots \) A1
\( = 0 \times t + {\text{P}}(X = 1){t^2} + 0 \times {t^3} + {\text{P}}(X = 2){t^4} + \ldots \) M1A1
\( = {G_X}({t^2})\) AG
OR
\({G_Y}(t) = E({t^Y}) = E({t^{2X}})\) M1A1
\( = E\left( {{{({t^2})}^X}} \right)\) A1
\( = {G_X}({t^2})\) AG
(ii) \({\text{E}}(Y) = {G'_Y}(1)\) A1
EITHER
\( = 2t{G'_X}({t^2})\) evaluated at \(t = 1\) M1A1
\( = 2{\text{E}}(X)\) AG
OR
\( = \frac{{\text{d}}}{{{\text{d}}x}}\left( {\frac{{p{t^2}}}{{(1 - q{t^2})}}} \right) = \frac{{2pt(1 - q{t^2}) + 2pq{t^3}}}{{{{(1 - q{t^2})}^2}}}\) evaluated at \(t = 1\) A1
\( = 2 \times \frac{{p(1 - qt) + pqt}}{{{{(1 - qt)}^2}}}\) evaluated at \(t = 1{\text{ (or }}\frac{2}{p})\) A1
\( = 2{\text{E}}(X)\) AG
[6 marks]
(d) (i) \({G_W}(t) = t{G_Y}(t)\) (or equivalent) A2
(ii) attempt to evaluate \({G'_W}(t)\) M1
EITHER
obtain \(1 \times {G_Y}(t) + t \times {G'_Y}(t)\) A1
substitute \(t = 1\) to obtain \(1 \times 1 + 1 \times {G'_Y}(1)\) A1
OR
\( = \frac{{\text{d}}}{{{\text{d}}x}}\left( {\frac{{p{t^3}}}{{(1 - q{t^2})}}} \right) = \frac{{3p{t^2}(1 - q{t^2}) + 2pq{t^4}}}{{{{(1 - q{t^2})}^2}}}\) A1
substitute \(t = 1\) to obtain \(1 + \frac{2}{p}\) A1
\( = 1 + 2{\text{E}}(X)\) AG
[5 marks]
Total [16 marks]