Date | November 2017 | Marks available | 3 | Reference code | 17N.3sp.hl.TZ0.5 |
Level | HL only | Paper | Paper 3 Statistics and probability | Time zone | TZ0 |
Command term | Show that | Question number | 5 | Adapted from | N/A |
Question
The random variable \(X\) follows a Poisson distribution with mean \(\lambda \). The probability generating function of \(X\) is given by \({G_X}(t) = {{\text{e}}^{\lambda (t - 1)}}\).
The random variable \(Y\), independent of \(X\), follows a Poisson distribution with mean \(\mu \).
Find expressions for \({G’_X}(t)\) and \({G’’_X}(t)\).
Hence show that \({\text{Var}}(X) = \lambda \).
By considering the probability generating function, \({G_{X + Y}}(t)\), of \(X + Y\), show that \(X + Y\) follows a Poisson distribution with mean \(\lambda + \mu \).
Show that \({\text{P}}(X = x|X + Y = n) = \left( {\begin{array}{*{20}{c}} n \\ x \end{array}} \right){\left( {\frac{\lambda }{{\lambda + \mu }}} \right)^x}{\left( {1 - \frac{\lambda }{{\lambda + \mu }}} \right)^{n - x}}\), where \(n\), \(x\) are non-negative integers and \(n \geqslant x\).
Identify the probability distribution given in part (c)(i) and state its parameters.
Markscheme
\({G’_X}(t) = \lambda {{\text{e}}^{\lambda (t - 1)}}\) A1
\({G’’_X}(t) = {\lambda ^2}{{\text{e}}^{\lambda (t - 1)}}\) A1
[2 marks]
\({\text{Var}}(X) = {G''_X}(1) + {G'_X}(1) - {\left( {{{G'}_X}(1)} \right)^2}\) (M1)
\({G’_X}(1) = \lambda \) and \({G’’_X}(1) = {\lambda ^2}\) (A1)
\({\text{Var}}(X) = {\lambda ^2} + \lambda - {\lambda ^2}\) A1
\( = \lambda \) AG
[3 marks]
\({G_{X + Y}}(t) = {{\text{e}}^{\lambda (t - 1)}} \times {{\text{e}}^{\mu (t - 1)}}\) M1
Note: The M1 is for knowing to multiply pgfs.
\( = {{\text{e}}^{(\lambda + \mu )(t - 1)}}\) A1
which is the pgf for a Poisson distribution with mean \(\lambda + \mu \) R1AG
Note: Line 3 identifying the Poisson pgf must be seen.
[3 marks]
\({\text{P}}(X = x|X + Y = n) = \frac{{{\text{P}}(X = x \cap Y = n - x)}}{{{\text{P}}(X + Y = n)}}\) (M1)
\( = \left( {\frac{{{{\text{e}}^{ - \lambda }}{\lambda ^x}}}{{x!}}} \right)\left( {\frac{{{{\text{e}}^{ - \mu }}{\mu ^{n - x}}}}{{(n - x)!}}} \right)\left( {\frac{{n!}}{{{{\text{e}}^{ - (\lambda + \mu )}}{{(\lambda + \mu )}^n}}}} \right)\) (or equivalent) M1A1
\( = \left( {\begin{array}{*{20}{c}} n \\ x \end{array}} \right)\frac{{{\lambda ^x}{\mu ^{n - x}}}}{{{{(\lambda + \mu )}^n}}}\) A1
\( = \left( {\begin{array}{*{20}{c}} n \\ x \end{array}} \right){\left( {\frac{\lambda }{{\lambda + \mu }}} \right)^x}{\left( {\frac{\mu }{{\lambda + \mu }}} \right)^{n - x}}\) A1
leading to \({\text{P}}(X = x|X + Y = n) = \left( {\begin{array}{*{20}{c}} n \\ x \end{array}} \right){\left( {\frac{\lambda }{{\lambda + \mu }}} \right)^x}{\left( {1 - \frac{\lambda }{{\lambda + \mu }}} \right)^{n - x}}\) AG
[5 marks]
\({\text{B}}\left( {n,{\text{ }}\frac{\lambda }{{\lambda + \mu }}} \right)\) A1A1
Note: Award A1 for stating binomial and A1 for stating correct parameters.
[2 marks]