User interface language: English | Español

Date May 2017 Marks available 2 Reference code 17M.3sp.hl.TZ0.3
Level HL only Paper Paper 3 Statistics and probability Time zone TZ0
Command term Show that Question number 3 Adapted from N/A

Question

The discrete random variable \(X\) has the following probability distribution.

\({\text{P}}(X = x) = \left\{ {\begin{array}{*{20}{l}}
{p{q^{\frac{x}{2}}}}&{{\text{for }}x = 0,{\text{ }}2,{\text{ }}4,{\text{ }}6 \ldots {\text{ where }}p + q = 1,{\text{ }}0 < p < 1.} \\
0&{{\text{otherwise}}}
\end{array}} \right.\)

Show that the probability generating function for \(X\) is given by \(G(t) = \frac{P}{{1 - q{t^2}}}\).

[2]
a.

Hence determine \({\text{E}}(X)\) in terms of \(p\) and \(q\).

[4]
b.

The random variable \(Y\) is given by \(Y = 2X + 1\). Find the probability generating function for \(Y\).

[3]
c.

Markscheme

\(G(t) = \sum {P(X = x){t^x}} \)     (M1)

\( = p + pq{t^2} + p{q^2}{t^4} +  \ldots \)

(summing \(GP\)) \({u_1} = p,{\text{ }}r = q{t^2}\)     A1

\( = \frac{p}{{1 - q{t^2}}}\)     AG

[2 marks]

a.

\(G’(t) =  - \frac{p}{{{{(1 - q{t^2})}^2}}} \times  - 2qt\)     M1A1

\({\text{E}}(X) = G’(1)\)     (M1)

\( = \frac{{2pq}}{{{{(1 - q)}^2}}}\,\,\,\left( { = \frac{{2q}}{p}} \right)\)     A1

[4 marks]

b.

METHOD 1

\({\text{PGF of }}Y = \sum {P(Y = y){t^y}} \)     (M1)

\( = pt + pq{t^5} + p{q^2}{t^9} +  \ldots \)     A1

\( = \frac{{pt}}{{1 - q{t^4}}}\)     A1

METHOD 2

\({\text{PGF of }}Y = {\text{E}}({t^Y})\)     (M1)

\( = {\text{E}}({t^{2X + 1}})\)

\( = {\text{E}}\left( {{{({t^2})}^X}} \right) \times {\text{E}}(t)\)     A1

\( = \frac{{pt}}{{1 - q{t^4}}}\)     A1

[3 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 7 - Option: Statistics and probability » 7.1
Show 61 related questions

View options