Date | November 2015 | Marks available | 4 | Reference code | 15N.3sp.hl.TZ0.4 |
Level | HL only | Paper | Paper 3 Statistics and probability | Time zone | TZ0 |
Command term | Differentiate and Find | Question number | 4 | Adapted from | N/A |
Question
A discrete random variable \(U\) follows a geometric distribution with \(p = \frac{1}{4}\).
Find \(F(u)\), the cumulative distribution function of \(U\), for \(u = 1,{\text{ }}2,{\text{ }}3 \ldots \)
Hence, or otherwise, find the value of \(P(U > 20)\).
Prove that the probability generating function of \(U\) is given by \({G_u}(t) = \frac{t}{{4 - 3t}}\).
Given that \({U_i} \sim {\text{Geo}}\left( {\frac{1}{4}} \right),{\text{ }}i = 1,{\text{ }}2,{\text{ }}3\), and that \(V = {U_1} + {U_2} + {U_3}\), find
(i) \({\text{E}}(V)\);
(ii) \({\text{Var}}(V)\);
(iii) \({G_v}(t)\), the probability generating function of \(V\).
A third random variable \(W\), has probability generating function \({G_w}(t) = \frac{1}{{{{(4 - 3t)}^3}}}\).
By differentiating \({G_w}(t)\), find \({\text{E}}(W)\).
A third random variable \(W\), has probability generating function \({G_w}(t) = \frac{1}{{{{(4 - 3t)}^3}}}\).
Prove that \(V = W + 3\).
Markscheme
METHOD 1
\({\text{P}}(U = u) = \frac{1}{4}{\left( {\frac{3}{4}} \right)^{u - 1}}\) (M1)
\(F(u) = {\text{P}}(U \le u) = \sum\limits_{r = 1}^u {\frac{1}{4}{{\left( {\frac{3}{4}} \right)}^{r - 1}}\;\;\;} \)(or equivalent)
\( = \frac{{\frac{1}{4}\left( {1 - {{\left( {\frac{3}{4}} \right)}^u}} \right)}}{{1 - \frac{3}{4}}}\) (M1)
\( = 1 - {\left( {\frac{3}{4}} \right)^u}\) A1
METHOD 2
\({\text{P}}(U \le u) = 1 - {\text{P}}(U > u)\) (M1)
\({\text{P}}(U > u) = \) probability of \(u\) consecutive failures (M1)
\({\text{P}}(U \le u) = 1 - {\left( {\frac{3}{4}} \right)^u}\) A1
[3 marks]
\({\text{P}}(U > 20) = 1 - {\text{P}}(U \le 20)\) (M1)
\( = {\left( {\frac{3}{4}} \right)^{20}}\;\;\;( = 0.00317)\) A1
[2 marks]
\({G_U}(t) = \sum\limits_{r = 1}^\infty {\frac{1}{4}{{\left( {\frac{3}{4}} \right)}^{r - 1}}{t^r}\;\;\;} \)(or equivalent) M1A1
\( = \sum\limits_{r = 1}^\infty {\frac{1}{3}{{\left( {\frac{3}{4}t} \right)}^r}} \) (M1)
\( = \frac{{\frac{1}{3}\left( {\frac{3}{4}t} \right)}}{{1 - \frac{3}{4}t}}\;\;\;\left( { = \frac{{\frac{1}{4}t}}{{1 - \frac{3}{4}t}}} \right)\) A1
\( = \frac{t}{{4 - 3t}}\) AG
[4 marks]
(i) \(E(U) = \frac{1}{{\frac{1}{4}}} = 4\) (A1)
\(E({U_1} + {U_2} + {U_3}{\text{)}} = 4 + 4 + 4 = 12\) A1
(ii) \({\text{Var}}(U) = \frac{{\frac{3}{4}}}{{{{\left( {\frac{1}{4}} \right)}^2}}}=12\) A1
\({\text{Var(}}{U_1} + {U_2} + {U_3}) = 12 + 12 + 12 = 36\) A1
(iii) \({G_v}(t) = {\left( {{G_U}(t)} \right)^3}\) (M1)
\( = {\left( {\frac{t}{{4 - 3t}}} \right)^3}\) A1
[6 marks]
\({G_W}^\prime (t) = - 3{(4 - 3t)^{ - 4}}( - 3)\;\;\;\left( { = \frac{9}{{{{(4 - 3t)}^4}}}} \right)\) (M1)(A1)
\(E(W) = {G_W}^\prime (1) = 9\) (M1)A1
Note: Allow the use of the calculator to perform the differentiation.
[4 marks]
EITHER
probability generating function of the constant 3 is \({t^3}\) A1
OR
\({G_{W - 3}}(t) = E({t^{W + 3}}) = E({t^W})E({t^3})\) A1
THEN
\(W + 3\) has generating function \({G_{W + 3}} = \frac{1}{{{{(4 - 3t)}^3}}} \times {t^3} = {G_V}(t)\) M1
as the generating functions are the same \(V = W + 3\) R1AG
[3 marks]
Total [22 marks]