Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2017 Marks available 2 Reference code 17N.3sp.hl.TZ0.1
Level HL only Paper Paper 3 Statistics and probability Time zone TZ0
Command term Sketch and Indicate Question number 1 Adapted from N/A

Question

A continuous random variable T has a probability density function defined by

f(t)={t(4t2)40.

Find the cumulative distribution function F(t), for 0 \leqslant t \leqslant 2.

[3]
a.

Sketch the graph of F(t) for 0 \leqslant t \leqslant 2, clearly indicating the coordinates of the endpoints.

[2]
b.i.

Given that P(T < a) = 0.75, find the value of a.

[2]
b.ii.

Markscheme

F(t) = \int_0^t {\left( {x - \frac{{{x^3}}}{4}} \right){\text{d}}x{\text{ }}\left( { = \int_0^t {\frac{{x(4 - {x^2})}}{4}{\text{d}}x} } \right)}     M1

= \left[ {\frac{{{x^2}}}{2} - \frac{{{x^4}}}{{16}}} \right]_0^t{\text{ }}\left( { = \left[ {\frac{{{x^2}(8 - {x^2})}}{{16}}} \right]_0^t} \right){\text{ }}\left( { = \left[ {\frac{{ - 4 - {x^2}{)^2}}}{{16}}} \right]_0^t} \right)     A1

= \frac{{{t^2}}}{2} - \frac{{{t^4}}}{{16}}{\text{ }}\left( { = \frac{{{t^2}(8 - {t^2})}}{{16}}} \right){\text{ }}\left( { = 1 - \frac{{{{(4 - {t^2})}^2}}}{{16}}} \right)     A1

 

Note:     Condone integration involving t only.

 

Note:     Award M1A0A0 for integration without limits eg, \int {\frac{{t(4 - {t^2})}}{4}{\text{d}}t = \frac{{{t^2}}}{2} - \frac{{{t^4}}}{{16}}} or equivalent.

 

Note:     But allow integration + C then showing C = 0 or even integration without C if F(0) = 0 or F(2) = 1 is confirmed.

 

[3 marks]

a.

N17/5/MATHL/HP3/ENG/TZ0/SP/M/01.b.i

correct shape including correct concavity     A1

clearly indicating starts at origin and ends at (2,{\text{ }}1)     A1

 

Note:     Condone the absence of (0,{\text{ }}0).

 

Note:     Accept 2 on the x-axis and 1 on the y-axis correctly placed.

 

[2 marks]

b.i.

attempt to solve \frac{{{a^2}}}{2} - \frac{{{a^4}}}{{16}} = 0.75 (or equivalent) for a     (M1)

a = 1.41{\text{ }}( = \sqrt 2 )     A1

 

Note:     Accept any answer that rounds to 1.4.

 

[2 marks]

b.ii.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.

Syllabus sections

Topic 7 - Option: Statistics and probability » 7.1 » Cumulative distribution functions for both discrete and continuous distributions.
Show 22 related questions

View options