Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2017 Marks available 3 Reference code 17N.3sp.hl.TZ0.5
Level HL only Paper Paper 3 Statistics and probability Time zone TZ0
Command term Show that and Hence Question number 5 Adapted from N/A

Question

The random variable X follows a Poisson distribution with mean λ. The probability generating function of X is given by GX(t)=eλ(t1).

The random variable Y, independent of X, follows a Poisson distribution with mean μ.

Find expressions for GX(t) and GX.

[2]
a.i.

Hence show that {\text{Var}}(X) = \lambda .

[3]
a.ii.

By considering the probability generating function, {G_{X + Y}}(t), of X + Y, show that X + Y follows a Poisson distribution with mean \lambda  + \mu .

[3]
b.

Show that {\text{P}}(X = x|X + Y = n) = \left( {\begin{array}{*{20}{c}} n \\ x \end{array}} \right){\left( {\frac{\lambda }{{\lambda + \mu }}} \right)^x}{\left( {1 - \frac{\lambda }{{\lambda + \mu }}} \right)^{n - x}}, where n, x are non-negative integers and n \geqslant x.

[5]
c.i.

Identify the probability distribution given in part (c)(i) and state its parameters.

[2]
c.ii.

Markscheme

{G’_X}(t) = \lambda {{\text{e}}^{\lambda (t - 1)}}     A1

{G’’_X}(t) = {\lambda ^2}{{\text{e}}^{\lambda (t - 1)}}     A1

[2 marks]

a.i.

{\text{Var}}(X) = {G''_X}(1) + {G'_X}(1) - {\left( {{{G'}_X}(1)} \right)^2}     (M1)

{G’_X}(1) = \lambda and {G’’_X}(1) = {\lambda ^2}     (A1)

{\text{Var}}(X) = {\lambda ^2} + \lambda  - {\lambda ^2}     A1

= \lambda     AG

[3 marks]

a.ii.

{G_{X + Y}}(t) = {{\text{e}}^{\lambda (t - 1)}} \times {{\text{e}}^{\mu (t - 1)}}     M1

 

Note:     The M1 is for knowing to multiply pgfs.

 

= {{\text{e}}^{(\lambda  + \mu )(t - 1)}}     A1

which is the pgf for a Poisson distribution with mean \lambda  + \mu     R1AG

 

Note:     Line 3 identifying the Poisson pgf must be seen.

 

[3 marks]

b.

{\text{P}}(X = x|X + Y = n) = \frac{{{\text{P}}(X = x \cap Y = n - x)}}{{{\text{P}}(X + Y = n)}}     (M1)

= \left( {\frac{{{{\text{e}}^{ - \lambda }}{\lambda ^x}}}{{x!}}} \right)\left( {\frac{{{{\text{e}}^{ - \mu }}{\mu ^{n - x}}}}{{(n - x)!}}} \right)\left( {\frac{{n!}}{{{{\text{e}}^{ - (\lambda  + \mu )}}{{(\lambda  + \mu )}^n}}}} \right) (or equivalent)     M1A1

= \left( {\begin{array}{*{20}{c}} n \\ x \end{array}} \right)\frac{{{\lambda ^x}{\mu ^{n - x}}}}{{{{(\lambda + \mu )}^n}}}     A1

= \left( {\begin{array}{*{20}{c}} n \\ x \end{array}} \right){\left( {\frac{\lambda }{{\lambda + \mu }}} \right)^x}{\left( {\frac{\mu }{{\lambda + \mu }}} \right)^{n - x}}     A1

leading to {\text{P}}(X = x|X + Y = n) = \left( {\begin{array}{*{20}{c}} n \\ x \end{array}} \right){\left( {\frac{\lambda }{{\lambda + \mu }}} \right)^x}{\left( {1 - \frac{\lambda }{{\lambda + \mu }}} \right)^{n - x}}     AG

[5 marks]

c.i.

{\text{B}}\left( {n,{\text{ }}\frac{\lambda }{{\lambda  + \mu }}} \right)     A1A1

 

Note:     Award A1 for stating binomial and A1 for stating correct parameters.

 

[2 marks]

c.ii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.i.
[N/A]
c.ii.

Syllabus sections

Topic 7 - Option: Statistics and probability » 7.1 » Cumulative distribution functions for both discrete and continuous distributions.
Show 22 related questions

View options