DP Mathematics SL Questionbank
The chain rule for composite functions.
Description
[N/A]Directly related questions
- 16M.2.sl.TZ2.9e: There is a value of \(x\), for \(1 < x < 4\), for which the graphs of \(f\) and \(g\) have...
- 16M.2.sl.TZ2.9d: Given that \(g'(1) = - e\), find the value of \(a\).
- 16M.2.sl.TZ2.9c: Write down the value of \(b\).
- 16M.2.sl.TZ2.9b: Find \(f'(x)\).
- 16M.2.sl.TZ2.9a: Write down the equation of the horizontal asymptote of the graph of \(f\).
- 16M.1.sl.TZ1.10d: Let \(h(x) = f(x) \times g(x)\). Find the equation of the tangent to the graph of \(h\) at the...
- 16M.1.sl.TZ1.10c: Find \(g(1)\).
- 16M.1.sl.TZ1.10b: Write down \(g'(1)\).
- 16M.1.sl.TZ1.10a: Find \(f'(1)\).
- 12N.1.sl.TZ0.10a: Find \(f'(x)\) .
- 12N.1.sl.TZ0.10b: Let \(g(x) = \ln \left( {\frac{{6x}}{{x + 1}}} \right)\) , for \(x > 0\) . Show that...
- 12M.2.sl.TZ2.2b: On the grid below, sketch the graph of \(f'(x)\) .
- 12M.2.sl.TZ2.2a: Find \(f'(x)\) .
- 12N.1.sl.TZ0.10c: Let \(h(x) = \frac{1}{{x(x + 1)}}\) . The area enclosed by the graph of h , the x-axis and the...
- 08N.2.sl.TZ0.9a: Show that \(f'(x) = {{\rm{e}}^{2x}}(2\cos x - \sin x)\) .
- 08M.2.sl.TZ1.10b(i) and (ii): (i) Find \(f'(x)\) . (ii) Find \(g'(x)\) .
- 08M.1.sl.TZ2.9b: Find \(f'(x)\) , giving your answer in the form \(a{\sin ^p}x{\cos ^q}x\) where...
- 10N.1.sl.TZ0.2a: Find \(g'(x)\) .
- 10N.1.sl.TZ0.2b: Find the gradient of the graph of g at \(x = \pi \) .
- 09N.1.sl.TZ0.9a: (i) Find the coordinates of A. (ii) Show that \(f'(x) = 0\) at A.
- 09N.2.sl.TZ0.2a: Find \(f'(x)\) .
- 09N.2.sl.TZ0.2b: Find \(g'(x)\) .
- 09M.1.sl.TZ2.8a: Write down (i) \(f'(x)\) ; (ii) \(g'(x)\) .
- 09M.2.sl.TZ2.10d: Write down one value of x such that \(f'(x) = 0\) .
- 09M.2.sl.TZ2.6a: Write down the gradient of the curve at P.
- 10M.2.sl.TZ1.9a: Show that \(A = 10\) .
- 10M.2.sl.TZ1.9b: Given that \(f(15) = 3.49\) (correct to 3 significant figures), find the value of k.
- 10M.2.sl.TZ1.9c(i), (ii) and (iii): (i) Using your value of k , find \(f'(x)\) . (ii) Hence, explain why f is a decreasing...
- 10M.2.sl.TZ1.9d: Let \(g(x) = - {x^2} + 12x - 24\) . Find the area enclosed by the graphs of f and g .
- 11N.1.sl.TZ0.9c: Find \(f'(x)\) .
- 11N.1.sl.TZ0.9a(i), (ii) and (iii): Use the graph to write down the value of (i) a ; (ii) c ; (iii) d .
- 11N.1.sl.TZ0.9b: Show that \(b = \frac{\pi }{4}\) .
- 11N.1.sl.TZ0.9d: At a point R, the gradient is \( - 2\pi \) . Find the x-coordinate of R.
- 11N.2.sl.TZ0.10a: Sketch the graph of f .
- 11N.2.sl.TZ0.10c: Show that \(f'(x) = \frac{{20 - 6x}}{{{{\rm{e}}^{0.3x}}}}\) .
- 11N.2.sl.TZ0.10b(i) and (ii): (i) Write down the x-coordinate of the maximum point on the graph of f . (ii) Write down...
- 11N.2.sl.TZ0.10d: Find the interval where the rate of change of f is increasing.
- 11M.2.sl.TZ1.9b(i) and (ii): (i) Find \(f'(x)\) . (ii) Show that \(f''(x) = (4{x^2} - 2){{\rm{e}}^{ - {x^2}}}\) .
- 11M.2.sl.TZ1.9a: Identify the two points of inflexion.
- 11M.2.sl.TZ1.9c: Find the x-coordinate of each point of inflexion.
- 11M.2.sl.TZ1.9d: Use the second derivative to show that one of these points is a point of inflexion.
- 13M.2.sl.TZ1.9d: Show that \(f'(x) = \frac{{1000{{\rm{e}}^{ - 0.2x}}}}{{{{(1 + 50{{\rm{e}}^{ - 0.2x}})}^2}}}\) .
- 13M.2.sl.TZ2.10b: Consider all values of \(m\) such that the graphs of \(f\) and \(g\) intersect. Find the value of...
- 13N.1.sl.TZ0.10a: Show that \(f'(x) = \frac{{\ln x}}{x}\).
- 18M.1.sl.TZ2.10c: Let L2 be the tangent to the graph of g at P. L1 intersects L2 at the point Q. Find the...
- 18M.1.sl.TZ2.10b: Show that the graph of g has a gradient of 6 at P.
- 18M.1.sl.TZ2.10a.ii: Find \(f\left( 2 \right)\).
- 18M.1.sl.TZ2.10a.i: Write down \(f'\left( 2 \right)\).
- 18M.1.sl.TZ1.7: Consider f(x), g(x) and h(x), for x∈\(\mathbb{R}\) where h(x) = \(\left( {f \circ g}...
- 17M.2.sl.TZ1.6: Let \(f(x) = {({x^2} + 3)^7}\). Find the term in \({x^5}\) in the expansion of the derivative,...
- 15N.1.sl.TZ0.10d: The following diagram shows the shaded regions \(A\), \(B\) and \(C\). The regions are...