Processing math: 100%

User interface language: English | Español

Date May 2018 Marks available 7 Reference code 18M.1.sl.TZ1.7
Level SL only Paper 1 Time zone TZ1
Command term Find Question number 7 Adapted from N/A

Question

Consider f(x), g(x) and h(x), for x∈R where h(x) = (fg)(x).

Given that g(3) = 7 , g′ (3) = 4 and f ′ (7) = −5 , find the gradient of the normal to the curve of h at x = 3.

Markscheme

recognizing the need to find h′      (M1)

recognizing the need to find h′ (3) (seen anywhere)      (M1)

evidence of choosing chain rule        (M1)

eg   dydx=dydu×dudx,f(g(3))×g(3),f(g)×g

correct working       (A1)

eg  f(7)×4,5×4

h(3)=20      (A1)

evidence of taking their negative reciprocal for normal       (M1)

eg  1h(3),m1m2=1

gradient of normal is 120      A1 N4

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 6 - Calculus » 6.2 » The chain rule for composite functions.
Show 50 related questions

View options