User interface language: English | Español

Date May 2018 Marks available 1 Reference code 18M.2.sl.TZ1.10
Level SL only Paper 2 Time zone TZ1
Command term Write down Question number 10 Adapted from N/A

Question

Let f(x)=12cosx5sinx,πx2π, be a periodic function with f(x)=f(x+2π)

The following diagram shows the graph of f.

There is a maximum point at A. The minimum value of f is −13 .

A ball on a spring is attached to a fixed point O. The ball is then pulled down and released, so that it moves back and forth vertically.

The distance, d centimetres, of the centre of the ball from O at time t seconds, is given by

d(t)=f(t)+17,0t5.

Find the coordinates of A.

[2]
a.

For the graph of f, write down the amplitude.

[1]
b.i.

For the graph of f, write down the period.

[1]
b.ii.

Hence, write f(x) in the form pcos(x+r).

[3]
c.

Find the maximum speed of the ball.

[3]
d.

Find the first time when the ball’s speed is changing at a rate of 2 cm s−2.

[5]
e.

Markscheme

−0.394791,13

A(−0.395, 13)      A1A1 N2

[2 marks]

a.

13      A1 N1

[1 mark]

b.i.

2π, 6.28      A1 N1

[1 mark]

b.ii.

valid approach      (M1)

eg recognizing that amplitude is p or shift is r

f(x)=13cos(x+0.395)   (accept p = 13, r = 0.395)     A1A1 N3

Note: Accept any value of r of the form 0.395+2πk,kZ

[3 marks]

c.

recognizing need for d ′(t)      (M1)

eg  −12 sin(t) − 5 cos(t)

correct approach (accept any variable for t)      (A1)

eg  −13 sin(t + 0.395), sketch of d′, (1.18, −13), t = 4.32

maximum speed = 13 (cms−1)      A1 N2

[3 marks]

d.

recognizing that acceleration is needed      (M1)

eg   a(t), d "(t)

correct equation (accept any variable for t)      (A1)

eg  a(t)=2,|ddt(d(t))|=2,12cos(t)+5sin(t)=2

valid attempt to solve their equation   (M1)

eg  sketch, 1.33

1.02154

1.02      A2 N3

[5 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.
[N/A]
d.
[N/A]
e.

Syllabus sections

Topic 6 - Calculus » 6.6 » Kinematic problems involving displacement s, velocity v and acceleration a.
Show 64 related questions

View options