Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2018 Marks available 2 Reference code 18M.2.sl.TZ1.10
Level SL only Paper 2 Time zone TZ1
Command term Find Question number 10 Adapted from N/A

Question

Let f(x)=12cosx5sinx,π, be a periodic function with f\left( x \right) = f\left( {x + 2\pi } \right)

The following diagram shows the graph of f.

There is a maximum point at A. The minimum value of f is −13 .

A ball on a spring is attached to a fixed point O. The ball is then pulled down and released, so that it moves back and forth vertically.

The distance, d centimetres, of the centre of the ball from O at time t seconds, is given by

d\left( t \right) = f\left( t \right) + 17,\,\,0 \leqslant t \leqslant 5.

Find the coordinates of A.

[2]
a.

For the graph of f, write down the amplitude.

[1]
b.i.

For the graph of f, write down the period.

[1]
b.ii.

Hence, write f\left( x \right) in the form p\,\,{\text{cos}}\,\left( {x + r} \right).

[3]
c.

Find the maximum speed of the ball.

[3]
d.

Find the first time when the ball’s speed is changing at a rate of 2 cm s−2.

[5]
e.

Markscheme

−0.394791,13

A(−0.395, 13)      A1A1 N2

[2 marks]

a.

13      A1 N1

[1 mark]

b.i.

{2\pi }, 6.28      A1 N1

[1 mark]

b.ii.

valid approach      (M1)

eg recognizing that amplitude is p or shift is r

f\left( x \right) = 13\,\,{\text{cos}}\,\left( {x + 0.395} \right)   (accept p = 13, r = 0.395)     A1A1 N3

Note: Accept any value of r of the form 0.395 + 2\pi k,\,\,k \in \mathbb{Z}

[3 marks]

c.

recognizing need for d ′(t)      (M1)

eg  −12 sin(t) − 5 cos(t)

correct approach (accept any variable for t)      (A1)

eg  −13 sin(t + 0.395), sketch of d′, (1.18, −13), t = 4.32

maximum speed = 13 (cms−1)      A1 N2

[3 marks]

d.

recognizing that acceleration is needed      (M1)

eg   a(t), d "(t)

correct equation (accept any variable for t)      (A1)

eg  a\left( t \right) =  - 2,\,\,\left| {\frac{{\text{d}}}{{{\text{d}}t}}\left( {d'\left( t \right)} \right)} \right| = 2,\,\, - 12\,\,{\text{cos}}\,\left( t \right) + 5\,\,{\text{sin}}\,\left( t \right) =  - 2

valid attempt to solve their equation   (M1)

eg  sketch, 1.33

1.02154

1.02      A2 N3

[5 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.
[N/A]
d.
[N/A]
e.

Syllabus sections

Topic 6 - Calculus » 6.6 » Kinematic problems involving displacement s, velocity v and acceleration a.
Show 64 related questions

View options