User interface language: English | Español

Date May 2017 Marks available 3 Reference code 17M.1.sl.TZ2.3
Level SL only Paper 1 Time zone TZ2
Command term Find Question number 3 Adapted from N/A

Question

The random variable \(X\) is normally distributed with a mean of 100. The following diagram shows the normal curve for \(X\).

M17/5/MATME/SP1/ENG/TZ2/03

Let \(R\) be the shaded region under the curve, to the right of 107. The area of \(R\) is 0.24.

Write down \({\text{P}}(X > 107)\).

[1]
a.

Find \({\text{P}}(100 < X < 107)\).

[3]
b.

Find \({\text{P}}(93 < X < 107)\).

[2]
c.

Markscheme

\({\text{P}}(X > 107) = 0.24\,\,\,\left( { = \frac{6}{{25}},{\text{ }}24\% } \right)\)     A1     N1

[1 mark]

a.

valid approach     (M1)

eg\(\,\,\,\,\,\)\({\text{P}}(X > 100) = 0.5,{\text{ P}}(X > 100) - {\text{P}}(X > 107)\)

correct working     (A1)

eg\(\,\,\,\,\,\)\(0.5 - 0.24,{\text{ }}0.76 - 0.5\)

\({\text{P}}(100 < X < 107) = 0.26\,\,\,\left( { = \frac{{13}}{{50}},{\text{ }}26\% } \right)\)     A1     N2

[3 marks]

b.

valid approach     (M1)

eg\(\,\,\,\,\,\)\(2 \times 0.26,{\text{ }}1 - 2(0.24),{\text{ P}}(93 < X < 100) = {\text{P}}(100 < X < 107)\)

\({\text{P}}(93 < X < 107) = 0.52\,\,\,\left( { = \frac{{13}}{{25}},{\text{ }}52\% } \right)\)     A1 N2

[2 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 5 - Statistics and probability » 5.9
Show 67 related questions

View options