User interface language: English | Español

Date May 2018 Marks available 3 Reference code 18M.2.SL.TZ2.S_9
Level Standard Level Paper Paper 2 Time zone Time zone 2
Command term Find Question number S_9 Adapted from N/A

Question

A particle P moves along a straight line. The velocity v m s−1 of P after t seconds is given by v (t) = 7 cos t − 5t cos t, for 0 ≤ t ≤ 7.

The following diagram shows the graph of v.

Find the initial velocity of P.

[2]
a.

Find the maximum speed of P.

[3]
b.

Write down the number of times that the acceleration of P is 0 m s−2 .

[3]
c.

Find the acceleration of P when it changes direction.

[4]
d.

Find the total distance travelled by P.

[3]
e.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

initial velocity when t = 0      (M1)

eg v(0)

v = 7 (m s−1)      A1 N2

[2 marks]

a.

recognizing maximum speed when  | v |  is greatest      (M1)

eg  minimum, maximum, v' = 0

one correct coordinate for minimum      (A1)

eg  6.37896, −24.6571

24.7 (ms−1)     A1 N2

[3 marks]

b.

recognizing a = v ′     (M1)

eg   a = d v d t , correct derivative of first term

identifying when a = 0      (M1)

eg  turning points of v, t-intercepts of v 

3       A1 N3

[3 marks]

c.

recognizing P changes direction when = 0       (M1)

t = 0.863851      (A1)

−9.24689

a = −9.25 (ms−2)      A2 N3

[4 marks]

d.

correct substitution of limits or function into formula      (A1)
eg    0 7 | v | , 0 0.8638 v d t 0.8638 7 v d t , | 7 cos x 5 x cos x | d x , 3.32 = 60.6

63.8874

63.9 (metres)      A2 N3

[3 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.

Syllabus sections

Topic 5 —Calculus » SL 5.5—Integration introduction, areas between curve and x axis
Show 162 related questions
Topic 5 —Calculus » SL 5.6—Differentiating polynomials n E Q. Chain, product and quotient rules
Topic 5 —Calculus » SL 5.8—Testing for max and min, optimisation. Points of inflexion
Topic 5 —Calculus » SL 5.9—Kinematics problems
Topic 5 —Calculus » SL 5.11—Definite integrals, areas under curve onto x-axis and areas between curves
Topic 5 —Calculus

View options