Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

User interface language: English | Español

Date November 2020 Marks available 3 Reference code 20N.1.AHL.TZ0.H_12
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Sketch and State Question number H_12 Adapted from N/A

Question

Consider the function defined by f(x)=kx-5x-k, where x\{k} and k25

Consider the case where k=3.

State the equation of the vertical asymptote on the graph of y=f(x).

[1]
a.

State the equation of the horizontal asymptote on the graph of y=f(x).

[1]
b.

Use an algebraic method to determine whether f is a self-inverse function.

[4]
c.

Sketch the graph of y=f(x), stating clearly the equations of any asymptotes and the coordinates of any points of intersections with the coordinate axes.

[3]
d.

The region bounded by the x-axis, the curve y=f(x), and the lines x=5 and x=7 is rotated through 2π about the x-axis. Find the volume of the solid generated, giving your answer in the form π(a+b ln2) , where a, b.

[6]
e.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

x=k      A1


[1 mark]

a.

y=k      A1


[1 mark]

b.

METHOD 1

(ff)(x)=k(kx-5x-k)-5(kx-5x-k)-k        M1

=k(kx-5)-5(x-k)kx-5-k(x-k)        A1

=k2x-5k-5x+5kkx-5-kx+k2

=k2x-5xk2-5        A1

=x(k2-5)k2-5

=x

(ff)(x)=x , (hence f is self-inverse)        R1


Note:
The statement f(f(x))=x could be seen anywhere in the candidate’s working to award R1.

 

METHOD 2

f(x)=kx-5x-k

x=ky-5y-k        M1


Note:
Interchanging x and y can be done at any stage.


x(y-k)=ky-5        A1

xy-xk=ky-5

xy-ky=xk-5

y(x-k)=kx-5        A1

y=f-1(x)=kx-5x-k  (hence f is self-inverse)        R1


[4 marks]

c.

attempt to draw both branches of a rectangular hyperbola        M1

x=3 and y=3        A1

(0, 53) and (53, 0)        A1


[3 marks]

d.

METHOD 1

volume=π75(3x-5x-3)2dx       (M1)

EITHER

attempt to express 3x-5x-3 in the form p+qx-3       M1

3x-5x-3=3+4x-3       A1

OR

attempt to expand (3x-5x-3)2 or (3x-5)2 and divide out       M1

(3x-5x-3)2=9+24x-56(x-3)2       A1

THEN

(3x-5x-3)2=9+24x-3+16(x-3)2       A1

volume=π75(9+24x-3+16(x-3)2)dx

=π[9x+24ln(x-3)-16x-3]75       A1

=π(63+24ln4-4)-(45+24ln2-8)

=π(22+24ln2)       A1

 

METHOD 2

volume=π75(3x-5x-3)2dx       (M1)

substituting u=x-3dudx=1       A1

3x-5=3(u+3)-5=3u+4

volume=π42(3u+4u)2du       M1

=π429+16u2+24udu       A1

=π[9u-16u+24lnu]42       A1


Note: Ignore absence of or incorrect limits seen up to this point.


=π(22+24ln2)       A1


[6 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.

Syllabus sections

Topic 2—Functions » SL 2.2—Functions, notation domain, range and inverse as reflection
Show 83 related questions
Topic 5 —Calculus » SL 5.5—Integration introduction, areas between curve and x axis
Topic 1—Number and algebra » AHL 1.11—Partial fractions
Topic 5 —Calculus » SL 5.11—Definite integrals, areas under curve onto x-axis and areas between curves
Topic 5 —Calculus » AHL 5.15—Further derivatives and indefinite integration of these, partial fractions
Topic 5 —Calculus » AHL 5.17—Areas under curve onto y-axis, volume of revolution (about x and y axes)
Topic 1—Number and algebra
Topic 2—Functions
Topic 5 —Calculus

View options